Fragile X Syndrome (FXS) is the most common heritable cause of intellectual disability. In vitro electrophysiologic data from mouse models of FXS suggest that loss of fragile X mental retardation protein affects intracortical excitability and synaptic plasticity. Specifically, the cortex appears hyperexcitable, and use-dependent long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength are abnormal. Though animal models provide important information, FXS and other neurodevelopmental disorders are human diseases and as such translational research to evaluate cortical excitability and plasticity must be applied in the human. Transcranial magnetic stimulation paradigms have recently been developed to non-invasively investigate cortical excitability using paired pulse stimulation, as well as LTP- and LTD-like synaptic plasticity in response to theta burst stimulation (TBS) in vivo in the human. TBS applied on consecutive days can be used to measure metaplasticity (the ability of the synapse to undergo a second plastic change following a recent induction of plasticity). The current study investigated intracortical inhibition, plasticity and metaplasticity in full mutation females with FXS, participants with autism spectrum disorders (ASD), and neurotypical controls. Results suggest that intracortical inhibition is normal in participants with FXS, while plasticity and metaplasticity appear abnormal. ASD participants showed abnormalities in plasticity and metaplasticity, as well as heterogeneity in intracortical inhibition. Our findings highlight the utility of non-invasive neurophysiological measures to translate insights from animal models to humans with neurodevelopmental disorders, and thus provide direct confirmation of cortical dysfunction in patients with FXS and ASD.
Objective Theta-burst stimulation (TBS) is a repetitive transcranial magnetic stimulation (TMS) protocol, capable of enhancing or suppressing the amplitude of contralateral motor-evoked potentials (MEP) for several minutes after stimulation over the primary motor cortex. Continuous TBS (cTBS) produces a long-term depression (LTD)-like reduction of cortical excitability. The purpose of this study was to assess the test–retest reproducibility of the effects of cTBS and to investigate which neurophysiologic markers of cTBS-induced plasticity are most reproducible. Methods In ten healthy participants we evaluated in two different sessions the effects of cTBS (using AP–PA current direction, opposite to most commercial rTMS stimulators) on MEPs induced by single-pulse suprathreshold TMS (using AP–PA or PA current direction) over left motor cortex in the first dorsal inter-osseus (FDI) muscle. Results Results demonstrate that the marker of cTBS induced-plasticity with highest within-subject reproducibility is the modulation of corticospinal excitability measured 5 min after cTBS. Conclusion Overall the effects of cTBS modulation show limited test–retest reproducibility and some measures of the cTBS effects are more reproducible than others. Significance Studies comparing cTBS effects in healthy subjects and patients need to proceed with care. Further characterization of the effects of TBS and identification of the best metrics warrant future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.