R iparian zones are the interfaces between terrestrial and aquatic ecosystems. As ecotones, they encompass sharp gradients of environmental factors, ecological processes, and plant communities. Riparian zones are not easily delineated but are comprised of mosaics of landforms, communities, and environments within the larger landscape. We propose a conceptual model of riparian tones that integrates the physical processes that shape valleyfloor landscapes, the succession of terrestrial plant communities on these geomorphic surfaces, the formation of habitat, and the production of nutritional resources for aquatic ecosys-Riparian zones have been investiing a diverse and often confusing array of definitions based on hydrologic, topographic, edaphic, and vegetative criteria (see reviews in Karr and Schlosser 1978, Swanson et al. 1982). Most riparian classification system focus on a few selected at-tems.
S tudies of the effects of climate change on forests have focused on the ability of species to tolerate temperature and moisture changes and to disperse, but they have ignored the effects of disturbances caused by climate change (e.g., Ojima et al. 1991). Yet modeling studies indicate the importance of climate effects on disturbance regimes (He et al. 1999). Local, regional, and global changes in temperature and precipitation can influence the occurrence, timing, frequency, duration, extent, and intensity of disturbances (Baker 1995, Turner et al. 1998). Because trees can survive from decades to centuries and take years to become established, climate-change impacts are expressed in forests, in part, through alterations in disturbance regimes (Franklin et al. 1992, Dale et al. 2000). Disturbances, both human-induced and natural, shape forest systems by influencing their composition, structure, and functional processes. Indeed, the forests of the United States are molded by their land-use and disturbance history. Within the United States, natural disturbances having the greatest effects on forests include fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, and landslides (Figure 1). Each disturbance affects forests differently. Some cause large-scale tree mortality, whereas others affect community structure and organization without causing massive mortality (e.g., ground fires). Forest disturbances influence how much carbon is stored in trees or dead wood. All these natural disturbances interact with human-induced effects on the environment, such as air pollution and land-use change resulting from resource extraction, agriculture, urban and suburban expansion, and recreation. Some disturbances can be functions of both natural and human conditions (e.g., forest fire ignition and spread) (Figure 2).
Early‐successional forest ecosystems that develop after stand‐replacing or partial disturbances are diverse in species, processes, and structure. Post‐disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and post‐disturbance plant communities provide resources that attract and sustain high species diversity, including numerous early‐successional obligates, such as certain woodpeckers and arthropods. Early succession is the only period when tree canopies do not dominate the forest site, and so this stage can be characterized by high productivity of plant species (including herbs and shrubs), complex food webs, large nutrient fluxes, and high structural and spatial complexity. Different disturbances contrast markedly in terms of biological legacies, and this will influence the resultant physical and biological conditions, thus affecting successional pathways. Management activities, such as post‐disturbance logging and dense tree planting, can reduce the richness within and the duration of early‐successional ecosystems. Where maintenance of biodiversity is an objective, the importance and value of these natural early‐successional ecosystems are underappreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.