We have employed the circular dichroism (CD) technique to characterize the solution structure of CAP18~o6_~37, a lipopolysaccharide (LPS) binding, antimicrobial protein, and its interaction with lipid A. Our results revealed that CAP181o6_137 may exist in at least three lipid A concentration-dependent, primarily helix conformations. The 'model' structure of CAP181o6_~37 in 30% (v/v) TFE, determined by nuclear magnetic resonance (NMR) technique, was found to be a complete and very rigid helix. In this conformation, the cationic and hydrophobic groups of CAP18~o6_137 are separated into patches and stripes in such a way that it can favorably interact with lipid A through either coulombic interaction with the diphosphoryl groups or hydrophobic interaction with the fatty acyl chains.
In this work, we found that, during storage or after UV irradiation, ThT is demethylated or oxidized, forming three derivatives. These three derivatives were purified by high performance liquid chromatography and characterized by mass and nuclear magnetic resonance spectroscopy and the spectroscopic properties of pure ThT and the derivatives carefully compared. Our results show that the emission peak at 450 nm results from oxidized ThT and not from the monomeric form of ThT, as previously proposed. The partial conversion of ThT into oxidized and demethylated derivatives has an effect on amyloid detection using ThT assay. Irradiated ThT has the same lag time as pure ThT in the amyloidogenesis of insulin, but the intensity of the emitted fluorescence is significantly decreased.
In prion diseases, the normal prion protein is transformed by an unknown mechanism from a mainly α-helical structure to a β-sheet-rich, disease-related isomer. In this study, we surprisingly found that a slow, spontaneous α-to-coil-to-β transition could be monitored by circular dichroism spectroscopy in one full-length mouse recombinant prion mutant protein, denoted S132C/N181C, in which the endogenous cysteines C179 and C214 were replaced by Ala and S132 and N181 were replaced by Cys, during incubation in a non-denaturing neutral buffer. No denaturant was required to destabilize the native state for the conversion. The product after this structural conversion is toxic β-oligomers with high fluorescence intensity when binding with thioflavin T. Site-directed spin-labeling ESR data suggested that the structural conversion involves the unfolding of helix 2. After examining more protein mutants, it was found that the spontaneous structural conversion is due to the disulfide-deletion (C to A mutations). The recombinant wild-type mouse prion protein could also be transformed into β-oligomers and amyloid fibrils simply by dissolving and incubating the protein in 0.5 mM NaOAc (pH 7) and 1 mM DTT at 25°C with no need of adding any denaturant to destabilize the prion protein. Our findings indicate the important role of disulfide bond reduction on the structural conversion of the recombinant prion protein, and highlight the special “intrinsically disordered” conformational character of the recombinant prion protein.
Kinetic measurement of protein folding is limited by the method used to trigger folding. Traditional methods, such as stopped flow, have a long mixing dead time and cannot be used to monitor fast folding processes. Here, we report a compound, 4-(bromomethyl)-6,7-dimethoxycoumarin, that can be used as a "photolabile cage" to study the early stages of protein folding. The folding process of a protein, RD1, including kinetics, enthalpy, and volume change, was studied by the combined use of a phototriggered caging strategy and time-resolved photoacoustic calorimetry. The cage caused unfolding of the photolabile protein, and then a pulse UV laser (∼10(-9) s) was used to break the cage, leaving the protein free to refold and allowing the resolving of two folding events on a nanosecond time scale. This strategy is especially good for monitoring fast folding proteins that cannot be studied by traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.