Human impacts on Earth's ecosystems have greatly intensified in the last decades. This is reflected in unexpected disturbance events, as well as new and increasing socio-economic demands, all of which are affecting the resilience of forest ecosystems worldwide and the provision of important ecosystem services. This Anthropocene era is forcing us to reconsider past and current forest management and silvicultural practices, and search for new ones that are more flexible and better at dealing with the increasing uncertainty brought about by these accelerating and cumulative global changes. Here, we briefly review the focus and limitations of past and current forest management and silvicultural practices mainly as developed in Europe and North America. We then discuss some recent promising concepts, such as managing forests as complex adaptive systems, and approaches based on resilience, functional diversity, assisted migration and multi-species plantations, to propose a novel approach to integrate the functionality of species-traits into a functional complex network approach as a flexible and multi-scale way to manage forests for the Anthropocene. This approach takes into consideration the high level of uncertainty associated with future environmental and societal changes. It relies on the quantification and dynamic monitoring of functional diversity and complex network indices to manage forests as a functional complex network. Using this novel approach, the most efficient forest management and silvicultural practices can be determined, as well as where, at what scale, and at what intensity landscape-scale resistance, resilience and adaptive capacity of forests to global changes can be improved.
Aim Current interest in forecasting changes to species ranges has resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller-scale processes such as growth, fecundity and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them. Here, we present a flexible framework for integrating models at multiple scales using hierarchical Bayesian methods. Location Eastern North America (as an example).Methods Our framework builds a metamodel that is constrained by the results of multiple sub-models and provides probabilistic estimates of species presence. We applied our approach to a simulated dataset to demonstrate the integration of a correlative SDM with a theoretical model. In a second example, we built an integrated model combining the results of a physiological model with presenceabsence data for sugar maple (Acer saccharum), an abundant tree native to eastern North America. ResultsFor both examples, the integrated models successfully included information from all data sources and substantially improved the characterization of uncertainty. For the second example, the integrated model outperformed the source models with respect to uncertainty when modelling the present range of the species. When projecting into the future, the model provided a consensus view of two models that differed substantially in their predictions. Uncertainty was reduced where the models agreed and was greater where they diverged, providing a more realistic view of the state of knowledge than either source model. Main conclusionsWe conclude by discussing the potential applications of our method and its accessibility to applied ecologists. In ideal cases, our framework can be easily implemented using off-the-shelf software. The framework has wide potential for use in species distribution modelling and can drive better integration of multi-source and multi-scale data into ecological decision-making.
To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and local domain experts in the meta-model building process. The modeling team works iteratively with each of these groups to define essential questions, identify data resources, and then determine whether available tools can be applied or adapted, or whether new tools can be rapidly created to fit the need. The desired goal of the process is a linked series of domain-specific models (tools) that balances generalized "top-down" models (i.e., scientific models developed without input from the local system) with case-specific customized "bottom-up" models that are driven primarily by local needs. Information flow between models is organized according to vertical (i.e., between scale) and horizontal (i.e., within scale) dimensions. We illustrate our approach within a 2.1 million hectare forest planning district in central Labrador, a forested landscape where social and ecological values receive a higher priority than economic values. However, the focus of this paper is on the process of how SFM modeling tools and concepts can be rapidly assembled and applied in new locations, balancing efficient transfer of science with adaptation to local needs. We use the Labrador case study to illustrate strengths and challenges uniquely associated with a meta-modeling approach to integrated modeling as it fits within the broader collaborative modeling framework. Principle advantages of the approach include the scientific rigor introduced by peer-reviewed models, combined with the adaptability of meta-modeling.A key challenge is the limited transparency of scientific models to different participatory groups. This challenge can be overcome by frequent and substantive two-way communication among different groups at appropriate times in the model-building process, combined with strong leadership that includes strategic choices when assembling the modeling team. The toolkit approach holds promise for extending beyond case studies, without compromising the bottom-up flow of needs and information, to inform SFM planning using the best available science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.