Electrochemiluminescence (ECL) has an inherently low background and enables precise chemical reactions through electrical control. Here, we report an advanced ECL system, termed ECLipse (ECL in paired signal electrode). We physically separated ECL generation from target detection: These two processes were carried out in isolated chambers and coupled through an electrode. The strategy allowed us to minimize cross-chemical reactions, design electrodes for high ECL signals, and integrate multiple sensors in a chip. As a proof of concept, we implemented an eight-plex ECLipse and applied it to detect host factors in human plasma. ECLipse achieved higher signal-to-noise ratio than conventional ECL assays and was >7000-fold more sensitive than enzyme-linked immunosorbent assay. In a pilot clinical study, we could detect septic conditions by measuring host factors [i.e., interleukin-3 (IL-3), IL-6, and procalcitonin (PCT)]. ECLipse assay further revealed distinct IL-3 and IL-6 patterns in patients with severe acute respiratory syndrome coronavirus 2 infection.
Pancreatic ductal adenocarcinoma (PDAC) ranks among the most fatal cancer diseases, widely accepted to have the most dismal prognoses. Although immunotherapy has broadly revolutionized cancer treatment, its value in PDAC appears to be relatively low. Exhibiting protumoral effects, monocytes have recently been proposed as potential targets of such immunotherapeutic regimens. However, to date, the body of evidence on monocytes’ role in PDAC is scarce. Therefore, we analyzed monocytes in the peripheral blood of 58 PDAC patients prior to surgery and compared them to healthy individuals. PDAC patients showed increased levels of monocytes when compared to healthy controls In addition, patients with perineural infiltration demonstrated a higher percentage of monocytes compared to non-infiltrating tumors and PDAC G3 was associated with higher monocyte levels than PDAC G2. Patients with monocyte levels > 5% were found to have an 8.9-fold increased risk for a G3 and perineural infiltrated PDAC resulting in poorer survival compared to patients with <5% monocyte levels. Furthermore, PDAC patients showed increased expressions of CD86 and CD11c and decreased expressions of PD-L1 on monocytes compared to healthy individuals. Finally, levels of monocytes correlated positively with concentrations of IL-6 and TNF-α in plasma of PDAC patients. Based on our findings, we propose monocytes as a novel prognostic biomarker. Large-scale studies are needed to further decipher the role of monocytes in PDAC and investigate their potential as therapeutic targets.
RationaleSepsis, a global health burden, is often complicated by viral infections leading to increased long-term morbidity and mortality. Interleukin-3 (IL-3) has been identified as an important mediator amplifying acute inflammation in sepsis; however, its function in the host response to viral infections during sepsis remains elusive.ObjectivesTo investigate the role of IL-3 during viral pneumonia in sepsis.MethodsWe included septic patients from two different cohorts and used in vitro and in vivo assays. The obtained data were substantiated using a second model (SARS-CoV-2 infections).Measurements and main resultsLow plasma IL-3 levels were associated with increased herpes simplex virus (HSV) airway infections in septic patients, resulting in reduced overall survival. Likewise, Il-3-deficient septic mice were more susceptible to pulmonary HSV-1 infection and exhibited higher pulmonary inflammation than control mice. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating plasmacytoid dendritic cells (pDCs) into the airways and by enhancing pDC-mediated T cell activation upon viral stimulation. Interestingly, the ability of IL-3 to improve adaptive immunity was confirmed in patients with SARS-CoV-2 infections.ConclusionOur study identifies IL-3 as a predictive disease marker for viral reactivation in sepsis and reveals that IL-3 improves antiviral immunity by enhancing the recruitment and the function of pDCs.
Immunotherapy has become increasingly important in the treatment of colorectal cancer (CRC). Currently, CD73, also known as ecto-5′-nucleotidase (NT5E), has gained considerable interest as a potential therapeutic target. CD73 is one of the key enzymes catalyzing the conversion of extracellular ATP into adenosine, which in turn exerts potent immune suppressive effects. However, the role of CD73 expression on various cell types within the CRC tumor microenvironment remains unresolved. The expression of CD73 on various cell types has been described recently, but the role of CD73 on B-cells in CRC remains unclear. Therefore, we analyzed CD73 on B-cells, especially on tumor-infiltrating B-cells, in paired tumor and adjacent normal tissue samples from 62 eligible CRC patients. The highest expression of CD73 on tumor-infiltrating B-cells was identified on class-switched memory B-cells, followed by naive B-cells, whereas no CD73 expression was observed on plasmablasts. Clinicopathological correlation analysis revealed that higher CD73+ B-cells infiltration in the CRC tumors was associated with better overall survival. Moreover, metastasized patients showed a significantly decreased number of tumor-infiltrating CD73+ B-cells. Finally, neoadjuvant therapy correlated with reduced CD73+ B-cell numbers and CD73 expression on B-cells in the CRC tumors. As promising new immune therapies are being developed, the role of CD73+ B-cells and their subsets in the development of colorectal cancer should be further explored to find new therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.