A radiographic planning software program (mediCAD®) is a helpful tool for measuring cup inclination on AP radiographs. With respect to anteversion, measurements are rather susceptible to mistakes with mean inaccuracies of over 7°. Thus, 3D-CT remains the "gold standard" if a lower tolerance limit (±3°) is required for more complex biomechanical evaluations. As a pelvic landmark, the interteardrop line is preferential to the bi-ischial line because of its lower impact on the position of the pelvis.
Femoral stem version has a major influence on impingement and early post-operative stability after total hip arthroplasty (THA). The main objective of this study was to evaluate the validity of a novel radiological method for measuring stem version. Anteroposterior (AP) radiographs and three-dimensional CT scans were obtained for 115 patients (female/male 63/72, mean age 62.5 years (50 to 75)) who had undergone minimally invasive, cementless THA. Stem version was calculated from the AP hip radiograph by rotation-based change in the projected prosthetic neck-shaft (NSA*) angle using the mathematical formula ST = arcos [tan (NSA*) / tan (135)]. We used two independent observers who repeated the analysis after a six-week interval. Radiological measurements were compared with 3D-CT measurements by an independent, blinded external institute. We found a mean difference of 1.2° (sd 6.2) between radiological and 3D-CT measurements of stem version. The correlation between the mean radiological and 3D-CT stem torsion was r = 0.88 (p < 0.001). The intra- (intraclass correlation coefficient ≥ 0.94) and inter-observer agreement (mean concordance correlation coefficient = 0.87) for the radiological measurements were excellent. We found that femoral tilt was associated with the mean radiological measurement error (r = 0.22, p = 0.02). The projected neck-shaft angle is a reliable method for measuring stem version on AP radiographs of the hip after a THA. However, a highly standardised radiological technique is required for its precise measurement.
BackgroundThe number of total hip replacement surgeries has steadily increased over recent years. Reduction in postoperative pain increases patient satisfaction and enables better mobilization. Thus, pain management needs to be continuously improved. Problems are often caused not only by medical issues but also by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent, benchmarking.MethodsAll patients included in the study had undergone total hip arthroplasty (THA). Outcome parameters were analyzed 24 hours after surgery by means of the questionnaires from the German-wide project “Quality Improvement in Postoperative Pain Management” (QUIPS). A pain nurse interviewed patients and continuously assessed outcome quality parameters. A multidisciplinary team of anesthetists, orthopedic surgeons, and nurses implemented a regular procedure of data analysis and internal benchmarking. The health care team was informed of any results, and suggested improvements. Every staff member involved in pain management participated in educational lessons, and a special pain nurse was trained in each ward.ResultsFrom 2014 to 2015, 367 patients were included. The mean maximal pain score 24 hours after surgery was 4.0 (±3.0) on an 11-point numeric rating scale, and patient satisfaction was 9.0 (±1.2). Over time, the maximum pain score decreased (mean 3.0, ±2.0), whereas patient satisfaction significantly increased (mean 9.8, ±0.4; p<0.05). Among 49 anonymized hospitals, our clinic stayed on first rank in terms of lowest maximum pain and patient satisfaction over the period.ConclusionResults were already acceptable at the beginning of benchmarking a standardized pain management concept. But regular benchmarking, implementation of feedback mechanisms, and staff education made the pain management concept even more successful. Multidisciplinary teamwork and flexibility in adapting processes seem to be highly important for successful pain management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.