Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) is an experimental procedure for the expression condition-independent identification of protein-binding RNAs. RNA libraries derived from genomic DNA are generated via random priming, PCR amplification and in vitro transcription. Libraries consist of genomic sequences of selected size, and fragments are flanked by constant sequences required for amplification and transcription. This RNA pool is then subjected to several rounds of selection and amplification to enrich for RNAs meeting the selection criteria. Various selection criteria are possible. Here we describe selection by affinity to a protein of interest. High-affinity ligands can then be cloned and sequenced to allow their identification. With this method, protein-binding RNAs can be discovered, nucleic acid-protein interactions can be identified, and whole protein-nucleic acid networks can be defined. This method is also suitable for discovering novel genes, including non-protein-coding RNAs, and it complements in silico approaches. It is better suited to detect protein-binding RNAs that are differentially expressed (and therefore absent from many tissues) and low-abundance RNAs than experimental procedures that start from the isolation of expressed RNAs. The protocol takes approximately 3 months to complete.
The expression of endogenous retrotransposable elements including Long Interspersed Nuclear Element-1 (LINE-1 or L1) and Human Endogenous Retrovirus (HERV)-K accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. Here we address the safety and immunogenicity of vaccination with these elements. We employed immunohistochemical analysis and literature-precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 Open Reading Frame-2 (L1O2) induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human L1O2 (96% identity with macaque), and Simian ERV (SERV)-K Gag and Env induced polyfunctional T cell responses to all antigens, and antibody responses to SERV-K Env. There were no adverse safety or pathology findings related to vaccination. These studies provide the first evidence that immune responses can be induced safely against this class of self antigens, and pave the way for their investigation as HIV- or tumor-associated targets.
Bacterial small RNAs (sRNAs) are non-coding RNAs that regulate gene expression enabling cells to adapt to various growth conditions. Assuming that most RNAs require proteins to exert their activities, we purified and identified sRNA-binding factors via affinity chromatography and mass spectrometry. We consistently obtained RNA polymerase betasubunit, host factor Hfq and ribosomal protein S1 as sRNA-binding proteins in addition to several other factors. Most importantly, we observed that RNA polymerase not only binds several sRNAs but also reacts with them, both cleaving and extending the RNAs at their 3' ends. The fact that the RNA polymerase reacts with sRNAs maps their interaction site to the active centre cleft of the enzyme and shows that it takes RNAs as template to perform RNA-dependent RNA polymerase activity. We further performed genomic SELEX to isolate RNA polymerase-binding RNAs and obtained a large number of E. coli sequences binding with high affinity to this enzyme. In vivo binding of some of the RNAs to the RNA polymerase was confirmed via co-immunoprecipitation in cell extracts prepared from different growth conditions. Our observations show that RNA polymerase is able to bind and react with many different RNAs and we suggest that RNAs are involved in transcriptional regulation more frequently than anticipated.
The transactivating responsive (TAR) element is a RNA hairpin located in the 5' untranslated region of HIV-1 mRNA. It is essential for full-length transcription of the retroviral genome and therefore for HIV-1 replication. Hairpin aptamers that generate highly stable and specific complexes with TAR were previously identified, thus decreasing the level of TAR-dependent expression in cultured cells [Kolb, G., et al. (2006) RNA Biol. 3, 150-156]. We performed genomic SELEX against TAR using a human RNA library to identify human transcripts that might interact with the retroviral genome through loop-loop interactions and potentially contribute to the regulation of TAR-mediated processes. We identified a genomic aptamer termed a1 that folds as a hairpin with an apical loop complementary to five nucleotides of the TAR hexanucleotide loop. Surface plasmon resonance experiments performed on a truncated or mutated version of the a1 aptamer, in the presence of the Rop protein of Escherichia coli, indicate the formation of a highly stable a1-TAR kissing complex. The 5' ACCCAG loop of a1 constitutes a new motif of interaction with the TAR loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.