The transactivating responsive (TAR) element is a RNA hairpin located in the 5' untranslated region of HIV-1 mRNA. It is essential for full-length transcription of the retroviral genome and therefore for HIV-1 replication. Hairpin aptamers that generate highly stable and specific complexes with TAR were previously identified, thus decreasing the level of TAR-dependent expression in cultured cells [Kolb, G., et al. (2006) RNA Biol. 3, 150-156]. We performed genomic SELEX against TAR using a human RNA library to identify human transcripts that might interact with the retroviral genome through loop-loop interactions and potentially contribute to the regulation of TAR-mediated processes. We identified a genomic aptamer termed a1 that folds as a hairpin with an apical loop complementary to five nucleotides of the TAR hexanucleotide loop. Surface plasmon resonance experiments performed on a truncated or mutated version of the a1 aptamer, in the presence of the Rop protein of Escherichia coli, indicate the formation of a highly stable a1-TAR kissing complex. The 5' ACCCAG loop of a1 constitutes a new motif of interaction with the TAR loop.
Oligonucleotides complementary to RNA sequences interact poorly with folded target regions. In vitro selection of oligonucleotides carried out against RNA structures have led to aptamers that frequently differ from antisense sequences, but rather take advantage of non-double-stranded peculiarities of the target. Studies along this line provide information about tertiary RNA architectures as well as their interaction with ligand of interest. We describe here a genomic SELEX approach and its application to the recognition of stem-loop structures prone to the formation of kissing complexes. We also provide technical details for running a procedure termed 2D-SELEX that takes advantage of both in vitro selection and dynamic combinatorial chemistry. This allows selecting aptamer derivatives containing modified nucleotides that cannot be incorporated by polymerases. Last we present in vitro transcription conditions under which large amounts of RNA, suitable for NMR structural studies, can be obtained. These different aspects of the SELEX technology have been applied to the trans-activating responsive element of the human immunodeficiency virus type 1, which is crucial for the transcription of the retroviral genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.