The combination of simple Electrochemical Micro-Paper-based Analytical Devices (EμPADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.
A new class of bead-based microarray that uses electrogenerated chemiluminescence (ECL) as a readout mechanism to detect multiple antigens simultaneously is presented. This platform demonstrates the possibility of performing highly multiplexed assays using ECL because all the individual sensing beads in the array are simultaneously imaged and individually resolved by ECL. Duplex and triplex assay results are demonstrated as well as a cross reactivity study.
In vitro 3D culture could provide an important model of tissues in vivo, but assessing the effects of chemical compounds on cells in specific regions of 3D culture requires physical isolation of cells, and thus currently relies mostly on delicate and low-throughput methods. This paper describes a technique (“cells-in-gels-in-paper” CiGiP) that permits rapid assembly of arrays of 3D cell cultures, and convenient isolation of cells from specific regions of these cultures. The 3D cultures were generated by stacking sheets of 200-μm-thick paper, each sheet supporting 96 individual “spots” (thin circular slabs) of hydrogels containing cells, separated by hydrophobic material (wax, PDMS) impermeable to aqueous solutions, and hydrophilic and most hydrophobic solutes. A custom-made 96-well holder isolated the cell-containing zones from each other. Each well contained media to which a different compound could be added. After culture, and disassembly of the holder, peeling the layers apart ‘sectioned’ the individual 3D cultures into 200-μm-thick sections which were easy to analyze using 2D imaging (e.g., with a commercial gel scanner). This 96-well holder brings new utilities to high-throughput, cell-based screening, by combining the simplicity of CiGiP with the convenience of a microtiter plate. This work demonstrated the potential of this type of assays by examining the cytotoxic effects of phenylarsine oxide (PAO) and cyclophosphamide (CPA) on human breast cancer cells positioned at different separations from culture media in 3D cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.