Microbial monitoring of hospital surfaces can help identify target areas for improved infection prevention and control (IPCs). This study aimed to determine the levels and variations in the bacterial contamination of high-touch surfaces in five Kenyan hospitals and identify the contributing modifiable risk factors. A total of 559 high-touch surfaces in four departments identified as high risk of hospital-acquired infections were sampled and examined for bacterial levels of contamination using standard bacteriological culture methods. Bacteria were detected in 536/559 (95.9%) surfaces. The median bacterial load on all sampled surfaces was 6.0 × 104 CFU/cm2 (interquartile range (IQR); 8.0 × 103–1.0 × 106). Only 55/559 (9.8%) of the sampled surfaces had acceptable bacterial loads, <5 CFU/cm². Cleaning practices, such as daily washing of patient sheets, incident rate ratio (IRR) = 0.10 [95% CI: 0.04–0.24], providing hand wash stations, IRR = 0.25 [95% CI: 0.02–0.30], having running water, IRR = 0.19 [95% CI: 0.08–0.47] and soap for handwashing IRR = 0.21 [95% CI: 0.12–0.39] each significantly lowered bacterial loads. Transporting dirty linen in a designated container, IRR = 72.11 [95% CI: 20.22–257.14], increased bacterial loads. The study hospitals can best reduce the bacterial loads by improving waste-handling protocols, cleaning high-touch surfaces five times a day and providing soap at the handwash stations.
Background Healthcare-associated infections (HAIs) are often caused by multidrug-resistant (MDR) bacteria contaminating hospital environments which can cause outbreaks as well as sporadic transmission. Methods This study systematically sampled and utilized standard bacteriological culture methods to determine the numbers and types of MDR Enterococcus faecalis/faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli (ESKAPEE) from high-touch environments of five Kenyan hospitals; level 6 and 5 hospitals (A, B, and C), and level 4 hospitals (D and E), in 2018. Six hundred and seventeen high-touch surfaces across six hospital departments; surgical, general, maternity, newborn, outpatient and pediatric were sampled. Results 78/617 (12.6%) of the sampled high-touch surfaces were contaminated with MDR ESKAPEE; A. baumannii, 23/617 (3.7%), K. pneumoniae, 22/617 (3.6%), Enterobacter species, 19/617 (3.1%), methicillin resistant S. aureus (MRSA), 5/617 (0.8%), E. coli, 5/617 (0.8%), P. aeruginosa, 2/617 (0.3%), and E. faecalis and faecium, 2/617 (0.3%). Items found in patient areas, such as beddings, newborn incubators, baby cots, and sinks were the most frequently contaminated. Level 6 and 5 hospitals, B, 21/122 (17.2%), A, 21/122 (17.2%), and C, 18/136 (13.2%), were more frequently contaminated with MDR ESKAPEE than level 4 hospitals; D, 6/101 (5.9%), and E, 8/131 (6.1%). All the sampled hospital departments were contaminated with MDR ESKAPEE, with high levels observed in newborn, surgical and maternity. All the A. baumannii, Enterobacter species, and K. pneumoniae isolates were non-susceptible to piperacillin, ceftriaxone and cefepime. 22/23 (95.6%) of the A. baumannii isolates were non-susceptible to meropenem. In addition, 5 K. pneumoniae isolates were resistant to all the antibiotics tested except for colistin. Conclusion The presence of MDR ESKAPEE across all the hospitals demonstrated gaps in infection prevention practices (IPCs) that should be addressed. Non-susceptibility to last-line antibiotics such as meropenem threatens the ability to treat infections.
Background. Enterococci are clinically significant because of their increasing antibiotic resistance and their ability to cause severe infections due to an arsenal of virulence genes. Few studies in the developing world have examined virulence factors that may significantly impact patient outcomes. This study describes the antimicrobial resistance profiles and prevalence of five key Enterococcal virulence genes gelE, asa, cylA, esp, and hyl in forty-four clinical Enterococcus faecalis and E. faecium isolates in Kenya and their association with patients’ demographic and clinical characteristics. Results. All E. faecium isolates were obtained from hospital-acquired skin and soft tissue infections. While E. faecalis was associated with community-acquired urinary tract infections. All isolates were resistant to erythromycin, whereas 11/44 (27.5%), 25/44 (56.8%), 28/44 (63.6%), 37/44 (84.1%), 40/44 (90.0%), and 43/44 (97.5%) were susceptible to tetracycline, levofloxacin, gentamicin, ampicillin, nitrofurantoin, and teicoplanin, respectively. All isolates were susceptible to tigecycline, vancomycin, and linezolid. There was little difference in the antibiotic resistance profiles between E. faecalis and E. faecium. The prevalence of the virulence genes among the 44 isolates were 27 (61.4%) for gelE, 26 (59.1%) for asa1, 16 (36.3%) for esp, 11 (25.0%) for cylA, and 1 (2.3%) for hyl. 72.9% of E. faecalis isolates had multiple virulence genes compared to 57% of E. faecium isolates with no virulence genes. The hyl gene was only detected in E. faecium, while cylA and asa1 were only detected in E. faecalis. A significant correlation was observed between the presence of asa1 and esp virulence genes and tetracycline resistance ( P = 0.0305 and 0.0363, respectively). A significant correlation was also observed between the presence of virulence genes gelE and asa1 and nitrofurantoin resistance ( P = 0.0175 and 0.0225, respectively) and ampicillin resistance ( P = 0.0005 and 0.0008, respectively). Conclusion. The study highlights the high levels of erythromycin resistance in E. faecalis and E. faecium, the demographic factors influencing the species distribution among patients, and the accumulation of multiple virulence genes in E. faecalis. The significant association of gelE, asa1, and esp virulence genes with drug resistance could explain the pathogenic success of E. faecalis and provides a guide for future studies.
Klebsiella pneumoniae (KP) is a human pathogen causing a broad spectrum of diseases such as urinary tract infections (UTI), pneumonia, pyogenic liver abscess, bloodstream infections, and sepsis. Neonate, geriatric and immunocompromised individuals are the most vulnerable to KP infections. The success of KP as an infectious agent is due to the evolution of various mechanisms to evade the host's immune system. These diverse mechanisms have led to the dominance of KP infections in community settings where hypervirulent strains predominate and in hospital-acquired infections where multidrug-resistant strains predominate. KP infections in the past decades have been increasingly associated with high morbidity and mortality due to the emergence of multidrug-resistant and hypervirulent strains capable of evading both the internal immune defense mechanisms and external antimicrobial agents. The pharmaceutical industries have very few and often expensive new antibiotics in the pipeline, offering little hope for antibiotic therapy. The development of new therapeutic strategies such as polyvalent, biconjugate vaccines that can provide protective immunity, especially against vulnerable populations, can mitigate the effects of KP infections. In this review, we discuss the virulence mechanisms of KP and how it evades the innate host immunity, and the interplay between the virulence and immune evasion strategies. The progress in the search for a vaccine to protect against KP infections will also be highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.