Abstract. An animal's body condition will affect its survival and reproductive success, which influences population dynamics. Despite its importance, relatively little is known about the body condition of large whales and its relationship to reproduction. We assessed the body condition of humpback whales (Megap tera novaeangliae) at a breeding/resting ground from aerial photographs recorded using an unmanned aerial vehicle (UAV). Photogrammetry methods were used to measure the surface area of individual whales, which was used as an index for body condition. Repeated measurements of the same individuals were not possible; hence, this study represents a cross-sectional sample of the population. Intraseasonal changes in the body condition of four reproductive classes (calves, immature, mature, and lactating) were investigated to infer the relative energetic cost that each class faces during the breeding season. To better understand the costs of reproduction, we investigated the relationship between female body condition (FBC) and the linear growth and body condition of their dependent calves (CBC). We documented a linear decline in the body condition of mature whales (0.027 m 2 /d; n = 20) and lactating females (0.032 m 2 /d; n = 31) throughout the breeding season, while there was no change in body condition of immature whales (n = 51) and calves (n = 32). The significant decline in mature and lactating female's body condition implies substantial energetic costs for these reproductive classes. In support of this, we found a positive linear relationship between FBC and CBC. This suggests that females in poorer body condition may not have sufficient energy stores to invest as much energy into their offspring as better conditioned females without jeopardizing their own body condition and survival probability. Measurement precision was investigated from repeated measurements of the same animals both from the same and different photographs, and by looking at residual errors in relation to the positioning of the whales in the photographs. The resulting errors were included in a sensitivity analysis to demonstrate that model parameters were robust to measurement errors. Our findings provide strong support for the use of UAVs as a noninvasive tool to measure the body condition of whales and other mammals.
The short-term effects of tourist boats on the behaviour of Indo-Pacific bottlenose dolphins Tursiops aduncus were investigated off the south coast of Zanzibar, Tanzania, by comparing dolphin group behaviour in the presence (impact) and absence (control) of tourist boats. Groupfollows were conducted from a carefully maneuvered (non-invasive) independent research vessel and behavioural data on group activity were collected using scan sampling methods. By using a timediscrete Markov chain model, the transition probabilities of passing/changing from one behavioural state to another were calculated and compared between impact and control situations. The data were further used to construct behavioural budgets. In the presence of tourist boats, dolphins were less likely to stay in a resting or socialising activity but were more likely to start travelling or foraging, as inferred from the Markov chain model. The behavioral budgets showed that foraging, resting and socialising all decreased as an effect of tourist boat presence, while travelling increased. The behavioural responses are likely to have energetic implications, mainly by increasing physical demands.Further, the results demonstrate that the current level of tourism intensity off the south coast of Zanzibar affects the dolphins' cumulative behavioural budget. Regulations on dolphin tourism are therefore urgently needed to minimise potential long-term negative effects on the dolphins.
Despite the rapid increase in the use of unmanned aerial vehicles (UAVs) in marine mammal research, knowledge of the effects of UAVs on study animals is very limited. We recorded the in-air and in-water noise from two commonly used multi-rotor UAVs, the SwellPro Splashdrone and the DJI Inspire 1 Pro, to assess the potential for negative noise effects of UAV use. The Splashdrone and Inspire UAVs produced broad-band in-air source levels of 80 dB re 20 µPa and 81 dB re 20 µPa (rms), with fundamental frequencies centered at 60 Hz and 150 Hz. The noise of the UAVs coupled poorly into the water, and could only be quantified above background noise of the recording sites at 1 m depth when flying at altitudes of 5 and 10 m, resulting in broad-band received levels around 95 dB re µPa rms for the Splashdrone and around 101 dB re µPa rms for the Inspire. The third octave levels of the underwater UAV noise profiles are (i) close to ambient noise levels in many shallow water habitats, (ii) largely below the hearing thresholds at low frequencies of toothed whales, but (iii) likely above the hearing thresholds of baleen whales and pinnipeds. So while UAV noise may be heard by some marine mammals underwater, it is implied that the underwater noise effect is small, even for animals close to the water surface. Our findings will be valuable for wildlife managers and regulators when issuing permits and setting guidelines for UAV operations. Further, our experimental setup can be used by others to evaluate noise effects of larger sized UAVs on marine mammals.
Activity budgets can provide a direct link to an animal's bioenergetic budget and is thus a valuable unit of measure when assessing humaninduced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.
Summary1. Understanding how female body condition (FBC) influences foetal development, and hence offspring production, is fundamental for our understanding of species reproductive physiology and life history. 2. We investigated the effects of FBC on foetus growth in common minke whales. Pregnant minke whales were sampled around Iceland during the summer feeding seasons between 2003 and 2007 and the length and weight of their foetuses were measured. FBC was modelled as the relative difference between measured blubber volume and the average expected blubber volume of individual whales. Generalized linear models were used to test the effect of FBC on foetus length, while accounting for the daily growth in foetus size through gestation, as well as other covariates. 3. Foetus length increased curvilinearly through the study period at an average rate of 0Á964 cm day À1 (SE = 0Á138). The effect of FBC on foetal length was nonlinear, showing an almost linear positive relationship for females in poorer body condition (FBC < 0), which levelled off at better body conditions (FBC > 0). 4. The curvilinear relationship between FBC and foetus growth was confirmed by fitting a generalized additive model and by running separate analyses on two subsets of data separating females in poorer and better condition. 5. Our findings suggest that females that are in poorer body condition reduce their energetic investment in their foetus proportionately to their condition, most likely to help maintain a high survival probability. That foetus length did not increase for females in better body condition suggests that females have an upper limit on the amount of energy they will or can invest in their foetus. Reducing the size at birth by reducing the gestation period is also unlikely, because the reproductive cycle of balaenopterids is strongly linked to their seasonal migration between feeding grounds and breeding grounds. This study is the first to demonstrate that FBC can affect foetus growth in a capital breeding mysticete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.