Bayesian inversion is at the heart of probabilistic programming and more generally machine learning. Understanding inversion is made difficult by the pointful (kernel-centric) point of view usually taken in the literature. We develop a pointless (kernel-free) approach to inversion. While doing so, we revisit some foundational objects of probability theory, unravel their category-theoretical underpinnings and show how pointless Bayesian inversion sits naturally at the centre of this construction. P (d) · P (h | d) = P (d | h) · P (h)(1)
We develop a modular method to build algebraic structures. Our approach is categorical: we describe the layers of our construct as monads, and combine them using distributive laws. Finding such laws is known to be difficult and our method identifies precise sufficient conditions for two monads to distribute. We either (i) concretely build a distributive law which then provides a monad structure to the composition of layers, or (ii) pinpoint the algebraic obstacles to the existence of a distributive law and suggest a weakening of one layer that ensures distributivity. This method can be applied to a step-by-step construction of a programming language. Our running example will involve three layers: a basic imperative language enriched first by adding non-determinism and then probabilistic choice. The first extension works seamlessly, but the second encounters an obstacle, resulting in an 'approximate' language very similar to the probabilistic network specification language ProbNetKAT.
We present a denotational semantics for higherorder probabilistic programs in terms of linear operators between Banach spaces. Our semantics is rooted in the classical theory of Banach spaces and their tensor products, but bears similarities with the well-known semantics of higher-order programsà la Scott through the use ordered Banach spaces which allow definitions in terms of fixed points. Being based on a monoidal rather than cartesian closed structure, our semantics effectively treats randomness as a resource.
Fusion is arguably the simplest way to combine modal logics. For normal modal logics with Kripke semantics, many properties such as completeness and decidability are known to transfer from the component logics to their fusion. In this paper we investigate to what extent these results can be generalised to the case of arbitrary coalgebraic logics. Our main result generalises a construction of Kracht and Wolter and confirms that completeness transfers to fusion for a large class of logics over coalgebraic semantics. This result is independent of the rank of the logics and relies on generalising the notions of distance and box operator to coalgebraic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.