The potential of different catalytic after treatment techniques to meet future diesel emission standards, which are strongly shifted toward urban driving conditions including cold start, are critically discussed in this Account and evaluated for their suitability for commercial applications. The dominating techniques in this field are NO(x) storage, urea-selective catalytic reduction (SCR), and HC-SCR. Each of these techniques have significant disadvantages such as sulfur sensitiveness and regeneration requirements of NO(x)-storage materials, infrastructure issues and formation of ammonium nitrate (at low temperatures) for urea-SCR, and low-temperature activity of HC-SCR catalysts. Ways to overcome these disadvantages in commercial applications may involve optimized regeneration strategies, reactor modifications, flow reversal, closed-loop NO(x) feedback systems, nonthermal plasma, and/or hydrogen-assisted catalyses, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.