Motivation Discrete stochastic models of gene regulatory network models are indispensable tools for biological inquiry since they allow the modeler to predict how molecular interactions give rise to nonlinear system output. Model exploration with the objective of generating qualitative hypotheses about the workings of a pathway is usually the first step in the modeling process. It involves simulating the gene network model under a very large range of conditions, due to the large uncertainty in interactions and kinetic parameters. This makes model exploration highly computational demanding. Furthermore, with no prior information about the model behavior, labor-intensive manual inspection of very large amounts of simulation results becomes necessary. This limits systematic computational exploration to simplistic models. Results We have developed an interactive, smart workflow for model exploration based on semi-supervised learning and human-in-the-loop labeling of data. The workflow lets a modeler rapidly discover ranges of interesting behaviors predicted by the model. Utilizing that similar simulation output is in proximity of each other in a feature space, the modeler can focus on informing the system about what behaviors are more interesting than others by labeling, rather than analyzing simulation results with custom scripts and workflows. This results in a large reduction in time-consuming manual work by the modeler early in a modeling project, which can substantially reduce the time needed to go from an initial model to testable predictions and downstream analysis. Availability and implementation A python-package is available at https://github.com/Wrede/mio.git. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Summary: Discrete stochastic models of gene regulatory networks are fundamental tools for in silico study of stochastic gene regulatory networks. Likelihood-free inference and model exploration are critical applications to study a system using such models. However, the massive computational cost of complex, high-dimensional and stochastic modelling currently limits systematic investigation to relatively simple systems. Recently, machine-learning assisted methods have shown great promise to handle larger, more complex models. To support both ease-of-use of this new class of methods, as well as their further development, we have developed the scalable inference, optimisation and parameter exploration (Sciope) toolbox. Sciope is designed to support new algorithms for machine-learning assisted model exploration and likelihood-free inference. Moreover, it is built ground up to easily leverage distributed and heterogeneous computational resources for convenient parallelism across platforms from workstations to clouds. Availability and Implementation The Sciope Python3 toolbox is freely available on https://github.com/Sciope/Sciope, and has been tested on Linux, Windows and macOS platforms. Supplementary information Supplementary information is available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.