The current outbreak of a novel coronavirus, named as SARS-CoV-2 causing COVID-19 occurred in 2019, is in dire need of finding potential therapeutic agents. Recently, ongoing viral epidemic due to coronavirus (SARS-CoV-2) primarily affected mainland China that now threatened to spread to populations in most countries of the world. In spite of this, there is currently no antiviral drug/ vaccine available against coronavirus infection, COVID-19. In the present study, computer-aided drug design-based screening to find out promising inhibitors against the coronavirus (SARS-CoV-2) leads to infection, COVID-19. The lead therapeutic molecule was investigated through docking and molecular dynamics simulations. In this, binding affinity of noscapines(23B)-protease of SARS-CoV-2 complex was evaluated through MD simulations at different temperatures. Our research group has established that noscapine is a chemotherapeutic agent for the treatment of drug resistant cancers; however, noscapine was also being used as anti-malarial, anti-stroke and cough-suppressant. This study suggests for the first time that noscapine exerts its antiviral effects by inhibiting viral protein synthesis.
ARTICLE HISTORY
Nostoc is a complex and tough genus to differentiate, and its morphological plasticity makes it taxonomically complicated. Its cryptic diversity and almost no distinguishable morphological characteristics make this genus incredibly heterogeneous to evaluate on taxonomic scales. The strain NOS, isolated from a eutrophic water body, is being described as a new genus Aliinostoc with the strain showing motile hormogonia with gas vesicles as an atypical feature, which is currently considered as the diacritical feature of the genus but should be subjected to critical evaluation in the near future. The phylogenetic placement of Aliinostoc along with some other related sequences of Nostoc clearly separated this clade from Nostoc sensu stricto with high bootstrap support and robust topology in all the methods tested, thus providing strong proof of the taxa being representative of a new genus which morphologically appears to be Nostoc-like. Subsequent phylogenetic assessment using the rbcL, psbA, rpoC1 and tufA genes was done with the aim of facilitating future multi-locus studies on the proposed genus for better taxonomic clarity and resolution. Folding of the 16S-23S internal transcribed spacer region and subsequent comparisons with members of the genera Nostoc, Anabaena, Aulosira, Cylindrospermum, Sphaerospermopsis, Raphidiopsis, Desmonostoc and Mojavia gave entirely new secondary structures for the D1-D1' and box-B helix. Clear and separate clustering from Nostoc sensu stricto supports the establishment of Aliinostoc gen. nov. with the type species being Aliinostoc morphoplasticum sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.