Una arritmia cardíaca es un latido irregular del corazón que se traduce en un impulso eléctrico anormal, y su tipo se define por el ritmo y duración. Su clasificación ha sido abordada en diferentes campos de la ciencia, destacando el uso de algoritmos de aprendizaje profundo. La presente investigación, utilizó un modelo híbrido entre Redes Neuronales Convolucionales y el algoritmo metaheurístico de Optimización por Enjambre de Partículas; para la clasificación de arritmias cardíacas. El metaheurístico se encargó de optimizar la arquitectura de capas de la red neuronal, a través de la minización de la pérdida durante el entrenamiento y prueba. Los datos se obtuvieron del MIT-BIH Arrhythmia dataset, donde se describen cinco categorías de arritmias. Los resultados logrados demostraron que el metaheurístico es un algoritmo confiable en la búsqueda de la mejor arquitectura de capas, logrando obtener una exactitud del 97%, lo que significa que el uso de técnicas metaheurísticas es una opción que se debe tomar en consideración a la hora de optimizar el rendimiento de las redes neuronales convolucionales.
An electrocardiogram (ECG) is a non-invasive study used for the diagnosis of cardiac arrhythmias (CAs). The identification of a cardiac arrhythmia depends on its classification. This classification has been approached through different strategies, both mathematical and computational. In this work, a new computational model based on the particle swarm optimization (PSO) algorithm and convolutional neural network (CNN) is proposed for the classification of five classes of CAs obtained from the MIT-BIH Arrhythmia Dataset (MITDB). The goal of the PSO is to optimize the hyperparameters that define the layered architecture of a CNN, to increase the accuracy and decrease the categorical crossentropy error (CE). The proposed model found a satisfactory layered architecture in 17.68 hours, obtaining an accuracy of 98% and 97%, a CE of 0.044968 and 0.084768, in training and testing, respectively. These results demonstrate that the proposed model is reliable and represents an innovative approach because it allows dispensing with the manual selection of the hyperparameters of the layered architecture of a CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.