A PDE proof is provided for the sharp L ∞ estimates for the complex Monge-Ampère equation which had required pluripotential theory before. The proof covers both cases of fixed background as well as degenerating background metrics. It extends to more general fully non-linear equations satisfying a structural condition, and it also gives estimates of Trudinger type.
A new proof for stability estimates for the complex Monge-Ampère and Hessian equations is given, which does not require pluripotential theory. A major advantage is that the resulting stability estimates are then uniform under general degenerations of the background metric in the case of the Monge-Ampère equation, and under degenerations to a big class in the case of Hessian equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.