Continuous hybrid methods are now recognized as efficient numerical methods for problems whose solutions have finite domains or cannot be solved analytically. In this work, the continuous hybrid numerical method for the solution of general second order initial value problems of ordinary differential equations is considered. The method of collocation of the differential system arising from the approximate solution to the problem is adopted using the power series as a basis function. The method is zero stable, consistent, convergent. It is suitable for both non-stiff and mildly-stiff problems and results were found to compete favorably with the existing methods in terms of accuracy.
A symmetric hybrid linear multistep method for direct solution of general third order ordinary differential equations is considered in this paper. The method is developed by interpolation and collocation approach using a combination of power series and exponential function as basis function. The consistency, stability, order and error constant of the method were determined. The results showed that the method is consistent, zero stable and of order five with low error constant. The accuracy compared favorably over existing methods with higher order of accuracy.
This paper presents an explicit hybrid method for direct approximation of second order ordinary differential equations. The approach adopted in this work is by interpolation and collocation of a basis function and its corresponding differential system respectively. Interpolation of the basis function was done at both grid and off-grid points while the differential systems are collocated at selected points. Substitution of the unknown parameters into the basis function and simplification of the resulting equation produced the required continuous, consistent and symmetric explicit hybrid method. Attempts were made to derive starting values of the same order with the methods using Taylor's series expansion to circumvent the inherent disadvantage of starting values of lower order. The methods were applied to solve linear, non-linear, Duffing equation and a system of equation second-order initial value problems directly. Errors in the results obtained were compared with those of the existing implicit methods of the same and even of higher order. The comparison shows that the accuracy of the new method is better than the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.