Abstract. Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37°of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.
Ecological research in recent decades revealed that species loss has a predominantly negative effect on ecosystem functioning and stability. Most of these studies were based on random species loss scenarios, but extinctions in nature are not random. Recent experimental studies using macroscopic communities largely advanced knowledge about the effects of non-random species loss. However, in microscopic communities like the phytoplankton, implementing realistic species loss scenarios is challenging and experimental data are scarce. Creating more realistic experiments to study the role of phytoplankton diversity for ecosystem functioning is particularly important, as they provide up to 50% of global primary productivity, form the basis of all pelagic food webs, and are important for biogeochemical cycling. In this study, we experimentally tested and evaluated three methods for non-random species loss in a natural marine phytoplankton community. Dilution, filtration, and heat stress removed the targeted rare, large, and sensitive species, respectively. All these species groups are extremely vulnerable to extinction in future climate scenarios and play important roles in the communities. Dilution and filtration with a fine mesh additionally decreased initial biomass, which increased the variability of species left in the respective replicates. The methods tested in this study can be used to non-randomly manipulate phytoplankton species diversity in communities used for experiments. However, in studies where species identities are more important than species richness, the dilution and filtration methods should be modified to eliminate the effect of decreasing initial biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.