Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.
We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.
Habitat fragmentation is increasingly common on land and in the sea, leading to small, isolated habitat patches in which ecological processes may differ substantially from those in larger, continuous habitats. Seagrass is a productive but fragmented subtidal habitat that serves as a refuge from predation for many animals because its structural complexity limits the detection and capture of resident prey. The singular influence of seagrass habitat fragmentation (e.g., patch size) on faunal survival is largely unknown and has been difficult to quantify because seagrass habitat complexity (e.g., shoot density) and patch size are often confounded and vary seasonally. In early summer 1998 we quantified the effect of seagrass habitat fragmentation on juvenile blue crab (Callinectes sapidus) survival in the absence of covarying complexity by exposing tethered crabs to predators in density-controlled, artificial eelgrass (Zostera marina) plots embedded within natural seagrass patches of four broad size classes (Ͻ1 m 2 to Ͼ30 000 m 2 ). We repeated this experiment in late summer 1998 with three different shoot densities, after predictable environmental events (defoliation and bioturbation) had increased seagrass habitat fragmentation and decreased shoot density. In early summer, crab survival was inversely correlated with seagrass patch area; survival of juvenile blue crabs increased as patch size decreased, in contrast to patterns typically observed in terrestrial and marine systems. This pattern appears to have been due to low abundance of adult blue crabs, the chief predator of juvenile conspecifics, in small patches. In late summer, blue crab survival was greater than in early summer, and survival increased with artificial seagrass shoot density but did not vary with patch size. The breakdown of the relationship between crab survival and patch size in late summer may have resulted from influx of cownose rays, which fragmented large, continuous patches of seagrass into smaller patches in midsummer, potentially equalizing fragmentation across the seagrass meadow. These results show that (1) fragmented seagrass landscapes hold significant refuge value for juvenile blue crabs, (2) fragmentation and crab survival vary temporally, and (3) crab survival increases with habitat complexity (shoot density) regardless of patch size. The findings indicate that habitat patch size and complexity jointly drive organismal survival, and that their influence differs temporally in this dynamic landscape. Thus, ecological processes are sensitive to landscape structure, and studies of habitat structure should incorporate multiple scales of space and time, as well as potentially confounding structural variables.
Despite the importance of coastal ecosystems for the global carbon budgets, knowledge of their carbon storage capacity and the factors driving variability in storage capacity is still limited. Here we provide an estimate on the magnitude and variability of carbon stocks within a widely distributed marine foundation species throughout its distribution area in temperate Northern Hemisphere. We sampled 54 eelgrass (Zostera marina) meadows, spread across eight ocean margins and 36° of latitude, to determine abiotic and biotic factors influencing organic carbon (Corg) stocks in Zostera marina sediments. The Corg stocks (integrated over 25‐cm depth) showed a large variability and ranged from 318 to 26,523 g C/m2 with an average of 2,721 g C/m2. The projected Corg stocks obtained by extrapolating over the top 1 m of sediment ranged between 23.1 and 351.7 Mg C/ha, which is in line with estimates for other seagrasses and other blue carbon ecosystems. Most of the variation in Corg stocks was explained by five environmental variables (sediment mud content, dry density and degree of sorting, and salinity and water depth), while plant attributes such as biomass and shoot density were less important to Corg stocks. Carbon isotopic signatures indicated that at most sites <50% of the sediment carbon is derived from seagrass, which is lower than reported previously for seagrass meadows. The high spatial carbon storage variability urges caution in extrapolating carbon storage capacity between geographical areas as well as within and between seagrass species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.