Living organisms use composite materials for various functions, such as mechanical support, protection, motility and the sensing of signals. Although the individual components of these materials may have poor mechanical qualities, they form composites of polymers and minerals with a remarkable variety of functional properties. Researchers are now using these natural systems as models for artificial mechanosensors and actuators, through studying both natural structures and their interactions with the environment. In addition to inspiring the design of new materials, analysis of natural structures on this basis can provide insight into evolutionary constraints on structure-function relationships in living organisms and the variety of structural solutions that emerged from these constraints.
Spiders mainly feed on insects. This means that their fangs, which are used to inject venom into the prey, have to puncture the insect cuticle that is essentially made of the same material, a chitin‐protein composite, as the fangs themselves. Here a series of structural modifications in the fangs of the wandering spider Cupiennius salei are reported, including texture variation in chitin orientation and arrangement, gradients in protein composition, and selective incorporation of metal ions (Zn and Ca) and halogens (Cl). These modifications influence the mechanical properties of the fang in a graded manner from tip to base, allowing it to perform as a multi‐use injection needle that can break through insect cuticle, which is made of a chitin composite as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.