Predicting druggability and prioritizing certain disease modifying targets for the drug development process is of high practical relevance in pharmaceutical research. DoGSiteScorer is a fully automatic algorithm for pocket and druggability prediction. Besides consideration of global properties of the pocket, also local similarities shared between pockets are reflected. Druggability scores are predicted by means of a support vector machine (SVM), trained, and tested on the druggability data set (DD) and its nonredundant version (NRDD). The DD consists of 1069 targets with assigned druggable, difficult, and undruggable classes. In 90% of the NRDD, the SVM model based on global descriptors correctly classifies a target as either druggable or undruggable. Nevertheless, global properties suffer from binding site changes due to ligand binding and from the pocket boundary definition. Therefore, local pocket properties are additionally investigated in terms of a nearest neighbor search. Local similarities are described by distance dependent histograms between atom pairs. In 88% of the DD pocket set, the nearest neighbor and the structure itself conform with their druggability type. A discriminant feature between druggable and undruggable pockets is having less short-range hydrophilic-hydrophilic pairs and more short-range lipophilic-lipophilic pairs. Our findings for global pocket descriptors coincide with previously published methods affirming that size, shape, and hydrophobicity are important global pocket descriptors for automatic druggability prediction. Nevertheless, the variety of pocket shapes and their flexibility upon ligand binding limit the automatic projection of druggable features onto descriptors. Incorporating local pocket properties is another step toward a reliable descriptor-based druggability prediction.
Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set. File list (3) download file view on ChemRxiv manuscript.pdf (4.23 MiB) download file view on ChemRxiv supplementary.pdf (0.92 MiB) download file view on ChemRxiv tables.zip (5.99 KiB)
BackgroundAnnotations of the phylogenetic tree of the human kinome is an intuitive way to visualize compound profiling data, structural features of kinases or functional relationships within this important class of proteins. The increasing volume and complexity of kinase-related data underlines the need for a tool that enables complex queries pertaining to kinase disease involvement and potential therapeutic uses of kinase inhibitors.ResultsHere, we present KinMap, a user-friendly online tool that facilitates the interactive navigation through kinase knowledge by linking biochemical, structural, and disease association data to the human kinome tree. To this end, preprocessed data from freely-available sources, such as ChEMBL, the Protein Data Bank, and the Center for Therapeutic Target Validation platform are integrated into KinMap and can easily be complemented by proprietary data. The value of KinMap will be exemplarily demonstrated for uncovering new therapeutic indications of known kinase inhibitors and for prioritizing kinases for drug development efforts.ConclusionKinMap represents a new generation of kinome tree viewers which facilitates interactive exploration of the human kinome. KinMap enables generation of high-quality annotated images of the human kinome tree as well as exchange of kinome-related data in scientific communications. Furthermore, KinMap supports multiple input and output formats and recognizes alternative kinase names and links them to a unified naming scheme, which makes it a useful tool across different disciplines and applications. A web-service of KinMap is freely available at http://www.kinhub.org/kinmap/.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1433-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.