Predicting druggability and prioritizing certain disease modifying targets for the drug development process is of high practical relevance in pharmaceutical research. DoGSiteScorer is a fully automatic algorithm for pocket and druggability prediction. Besides consideration of global properties of the pocket, also local similarities shared between pockets are reflected. Druggability scores are predicted by means of a support vector machine (SVM), trained, and tested on the druggability data set (DD) and its nonredundant version (NRDD). The DD consists of 1069 targets with assigned druggable, difficult, and undruggable classes. In 90% of the NRDD, the SVM model based on global descriptors correctly classifies a target as either druggable or undruggable. Nevertheless, global properties suffer from binding site changes due to ligand binding and from the pocket boundary definition. Therefore, local pocket properties are additionally investigated in terms of a nearest neighbor search. Local similarities are described by distance dependent histograms between atom pairs. In 88% of the DD pocket set, the nearest neighbor and the structure itself conform with their druggability type. A discriminant feature between druggable and undruggable pockets is having less short-range hydrophilic-hydrophilic pairs and more short-range lipophilic-lipophilic pairs. Our findings for global pocket descriptors coincide with previously published methods affirming that size, shape, and hydrophobicity are important global pocket descriptors for automatic druggability prediction. Nevertheless, the variety of pocket shapes and their flexibility upon ligand binding limit the automatic projection of druggable features onto descriptors. Incorporating local pocket properties is another step toward a reliable descriptor-based druggability prediction.
Automated prediction of protein active sites is essential for large-scale protein function prediction, classification, and druggability estimates. In this work, we present DoGSite, a new structure-based method to predict active sites in proteins based on a Difference of Gaussian (DoG) approach which originates from image processing. In contrast to existing methods, DoGSite splits predicted pockets into subpockets, revealing a refined description of the topology of active sites. DoGSite correctly predicts binding pockets for over 92% of the PDBBind and the scPDB data set, being in line with the best-performing methods available. In 63% of the PDBBind data set the detected pockets can be subdivided into smaller subpockets. The cocrystallized ligand is contained in exactly one subpocket in 87% of the predictions. Furthermore, we introduce a more precise prediction performance measure by taking the pairwise ligand and pocket coverage into account. In 90% of the cases DoGSite predicts a pocket that contains at least half of the ligand. In 70% of the cases additionally more than a quarter of the respective pocket itself is covered by the cocrystallized ligand. Consideration of subpockets produces an increase in coverage yielding a success rate of 83% for the latter measure.
Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials.
The DNA repair protein O 6 -methylguanine-DNA methyltransferase (MGMT) is inducible by genotoxic stress. MGMT induction results from transcriptional activation of the MGMT gene which is a speci®c response to DNA damage. A possible factor involved in triggering MGMT induction might be p53, because both p53 and MGMT are activated by DNA breaks. To study the e ect of p53 on induction of the MGMT gene, we compared the presence of functional wild-type (wt) and mutant p53 with MGMT expression level in various mouse ®broblasts and rat hepatoma cell lines upon genotoxic treatment. Cells which responded to ionizing radiation (IR) by MGMT induction displayed functional p53, whereas in cells not expressing wt p53, MGMT induction was not observed. Also, the cloned MGMT promoter was inducible by IR upon transfection into p53 wt cells, but not in cells de®cient for p53. Thus, expression of wt p53 appears to be required for induction of MGMT mRNA and protein by IR. On the other hand, transfection of a MGMT-promoter-CAT construct together with p53 (either wt or mutant) in cells expressing wt p53 markedly reduced the basal activity of the MGMT promoter whereas cotransfection with a p53 antisense construct slightly increased MGMT promoter activity. Furthermore, cotransfection of MGMT promoter with wt or mutant p53 in p53 wt cells reduced radiation evoked MGMT promoter induction. Thus, transfection mediated high level expression of p53 has inhibitory e ect both on basal MGMT promoter activity and its activation by IR. The results give evidence for involvement of p53 in DNA damage-induced MGMT promoter activation.
Repair of alkylated bases in DNA is performed by O6-methylguanine-DNA methyltransferase (MGMT) and a set of enzymes of the base excision repair pathway involving N-methylpurine-DNA glycosylase (MPG), apurinic endonuclease (APE), DNA polymerase beta (Pol beta) and DNA ligase. The level of expression of these enzymes may exert a profound effect on resistance of cells towards alkylating drugs. We have comparatively analyzed the expression of MGMT and the different base excision repair genes in rat hepatoma cells (line H4IIE) after exposure to alkylating agents, X-rays and the glucocorticoid hormone dexamethasone. Furthermore, the effect of these agents on the activity of the cloned human MGMT promoter was assayed. Exposure of cells to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or ionizing radiation increased MGMT mRNA levels up to 4.5-fold. Under the same conditions of treatment, exerting only a weak toxic effect, MPG and DNA ligase I mRNA levels were not enhanced, whereas the amounts of APE and Pol beta mRNA transiently increased by approximately 2-fold after X-ray and MNNG treatment, respectively. Dexamethasone induced both MGMT, APE and Pol beta mRNA and the induction paralleled the increase in mRNA of the glucocorticoid-dependent gene tyrosine aminotransferase. The observed increase in MGMT mRNA was due to promoter activation, which was shown in transient transfection assays with MGMT promoter-CAT reporter constructs in H4IIE cells. In these assays, the human MGMT promoter was found to be induced by methylating agents (MNNG and methyl methanesulfonate), ionizing radiation and dexamethasone. Weak induction of the promoter was observed after UV irradiation. Treatment with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate was ineffective in promoter activation. The transfected MGMT promoter was not inducible by mutagens in HeLa S3 cells, which do not respond with induction of the endogenous MGMT gene. This is the first report showing hormone induction of a DNA repair gene (MGMT). The induction of MGMT and other genes encoding enzymes involved in DNA alkylation damage repair may be relevant in cancer therapy by causing resistance of tumor cells to alkylating drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.