Human endogenous retrovirus subfamily H (HERVH) is a class of transposable elements expressed preferentially in human embryonic stem cells (hESCs). Here, we report that the long terminal repeats of HERVH function as enhancers and that HERVH is a nuclear long noncoding RNA required to maintain hESC identity. Furthermore, HERVH is associated with OCT4, coactivators and Mediator subunits. Together, these results uncover a new role of species-specific transposable elements in hESCs.
About half of the human genome consists of highly repetitive elements, most of which are considered dispensable for human life. Here, we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation, thereby generating hundreds of co-expressed, ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements, indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription, many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary, we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.