Background/Aim: Depression-related aggression is linked to serotonin (5-HT) and dendritic spine alterations. Although Mallotus oppositifolius extract (MOE) has potential for reducing this effect, its specific role remains uncertain. Herein, we evaluated this potential and associated alterations in the brain.Methods: A standard resident-intruder model of para-chlorophenylalanine (pCPA)-induced depression-associated aggression in male ICR mice was used. The resident mice received pCPA (300 mg/kg, i. p.) for 3 consecutive days while saline-treated mice served as negative control. The pCPA aggressive mice were subsequently treated orally with either MOE (30, 100, 300 mg/kg), fluoxetine (20 mg/kg), tryptophan (20 mg/kg) or saline (untreated pCPA group) for 28 days. Locomotor activity was assessed using open field test. Serotonin (5-HT) levels in mice brain and phytochemical fingerprint of MOE were determined by high performance liquid chromatography (HPLC) while gas chromatography-mass spectrometry (GC-MS) was used to identify constituents of MOE. Dendritic spine density and morphology were evaluated using Golgi-Cox staining technique and analyzed with ImageJ and Reconstruct software.Results: Administration of pCPA induced aggressive behavior in mice, evidenced by increased attack behaviors (increased number and duration of attacks), which positively correlated with squeaking and tail rattling. MOE treatment significantly reduced these characteristics of aggression in comparison with vehicle (non-aggressive) and untreated pCPA groups (p < 0.001), and also reduced social exploration behavior. Although the behavioral effects of MOE were comparable to those of fluoxetine and tryptophan, these effects were quicker compared to fluoxetine and tryptophan. Additionally, MOE also markedly increased 5-HT concentration and dendritic spine density in the prefrontal cortex relative to vehicle and untreated pCPA groups (p < 0.05). Interestingly, these behavioral effects were produced without compromising locomotor activity. GC-MS analysis of the MOE identified 17 known compounds from different chemical classes with anti-inflammatory, antioxidant, neuroprotective and antidepressant activities, which may have contributed to its anti-aggressive effect.Conclusion: MOE decreased depression-associated aggressive behavior in mice via increased 5-HT concentration and dendritic spine density in the prefrontal cortex. The MOE-mediated effects were faster than those of fluoxetine and tryptophan. Our finding suggests that MOE may have clinical promise in decreasing aggressive and depressive behaviors.
Background: Natural remedies with neuroprotective effect are useful in neuroinflammation-associated depression. Although Mallotus oppositifolius extract (MOE) has previously demonstrated antidepressant and anti-inflammatory properties, its neuroprotective effect remains unknown. Thus, the study evaluated the effect of MOE on lipopolysaccharide (LPS)-induced neuroinflammation-associated depression in mice. Methods: Antidepressant-like effect of MOE (10 - 100 mg/kg), fluoxetine (20 mg/kg) and minocycline (50 mg/kg) was established in naïve Institute of Cancer Research (ICR) mice using the forced swim (FST), tail suspension (TST) and open-space swim (OSST) tests. In a separate experiment, FST and TST were used to assess the effect of an 11-day pre-treatment with MOE (10 - 100 mg/kg) or minocycline (50 mg/kg) on LPS (1 mg/kg) neuroinflammation at 6 and 24 hours post LPS. Following these tests, mice were sacrificed and their hippocampi isolated to evaluate their resting and activated microglial cells using Golgi-Cox staining technique. Open-field test was used to assess locomotor activity. Results: MOE, fluoxetine and minocycline significantly reduced immobility in FST, TST and OSST compared to vehicle (p < 0.05), confirming their antidepressant-like effect. Interestingly, MOE’s antidepressant-like effect was faster than fluoxetine and minocycline. Conversely, LPS treatment increased immobility behavior at 6 and 24 hours, suggestive of neuroinflammation-induced depression. Compared to vehicle group, pre-treatment with MOE and minocycline ameliorated LPS-induced hippocampal microglial activation and reversed increased immobility behavior without affecting locomotor activity (p < 0.05). Resting microglial cell count was significantly increased by MOE pre-treatment in the OSST-challenged mice compared to vehicle group (p < 0.01). Similarly, MOE pre-treatment reversed LPS-induced reduction in resting microglial count, and restored resting microglial count to normal levels compared to LPS naive vehicle group. Conclusions: Collectively, the results suggest that MOE exerts neuroprotective effect against LPS-induced neuroinflammation by decreasing the activation of microglia and increasing resting microglial count. This contributes to its antidepressant-like effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.