Background: There is an emerging perspective that it is not sufficient to just assess skin exposure to physical and chemical stressors in workplaces, but that it is also important to assess the condition, i.e. skin barrier function of the exposed skin at the time of exposure. The workplace environment, representing a non-clinical environment, can be highly variable and difficult to control, thereby presenting unique measurement challenges not typically encountered in clinical settings. Methods: An expert working group convened a workshop as part of the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals (OEESC) to develop basic guidelines and best practices (based on existing clinical guidelines, published data, and own experiences) for the in vivo measurement of transepidermal water loss (TEWL) and skin hydration in non-clinical settings with specific reference to the workplace as a worst-case scenario.
BackgroundSkin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control.MethodsAn expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review available data on factors that could influence the determination of skin surface pH in non-clinical settings with emphasis on the workplace as a worst case scenario.ResultsThe key elements of the guidelines are: (i) minimize, to the extent feasible, the influences of relevant endogenous (anatomical position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure of central tendency and variability; and (iii) report notable deviations from these guidelines and other relevant factors that may influence measurements.ConclusionGuidelines on the measurement and reporting of skin surface pH in non-clinical settings should promote consistency in data reporting, facilitate inter-comparison of study results, and aid in understanding and preventing occupational skin diseases.
Flow cytometry is a simple analytical technique that identifies, counts, and characterizes cells. The oxidative status of cells is influenced by many exogenous sources, such as occupational exposure to welding fumes. This study evaluated flow cytometry as a method to determine the oxidative status of male welders (n = 15) occupationally exposed to welding fumes. Flow cytometric analysis of reactive oxygen species (ROS) was carried out in peripheral blood mononuclear cells (PBMC) by using the probe 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA). Lipid peroxidation was measured by the decrease of fluor-DHPE fluorescence and intracellular glutathione (GSH) levels by using mercury orange. All of the parameters were also observed under a confocal microscope. The oxidative stress ratio was calculated from the oxidative damage and the antioxidant capacity to give an accurate account of the cellular oxidative status. ROS and lipid peroxidation levels were elevated by approximately 87% and approximately 96%, respectively, and GSH levels lowered approximately 96% in PBMC of workers exposed to welding fumes compared with non-exposed controls. The oxidative stress ratio was significantly higher (p < 0.001) in the exposed group. Flow cytometry can be useful for the measurement of cellular oxidative stress in somatic cells of workers exposed to welding fumes and other occupational settings. Calculating an oxidative stress index may be useful in predicting disease outcomes and whether preventative control measures are efficient.
Reduced lung function was associated with increased inflammation and arterial stiffness. The lack of association between arterial stiffness and inflammatory markers suggests that inflammation may not be the mediating link between lung and vascular function in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.