Arabidopsis DREB2A is a key transcription factor of heat- and drought-responsive gene expression, and DREB2A expression is induced by these stresses. We analyzed the DREB2A promoter and found a heat shock element that functions as a cis-acting element in the heat shock (HS)-responsive expression of DREB2A. Among the 21 Arabidopsis heat shock factors, we chose 4 HsfA1-type proteins as candidate transcriptional activators (HsfA1a, HsfA1b, HsfA1d, and HsfA1e) based on transactivation activity and expression patterns. We generated multiple mutants and found that the HS-responsive expression of DREB2A disappeared in hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. Moreover, HS-responsive gene expression, including that of molecular chaperones and transcription factors, was globally and drastically impaired in the hsfa1a/b/d triple mutant, which exhibited greatly reduced tolerance to HS stress. HsfA1 protein accumulation in the nucleus was negatively regulated by their interactions with HSP90, and other factors potentially strongly activate the HsfA1 proteins under HS stress. The hsfa1a/b/d/e quadruple mutant showed severe growth retardation, and many genes were downregulated in this mutant even under non-stress conditions. Our study indicates that HsfA1a, HsfA1b, and HsfA1d function as main positive regulators in HS-responsive gene expression and four HsfA1-type proteins are important in gene expression for normal plant growth.
SummaryIn order to assess specific functional roles of plant heat shock transcription factors (HSF) we conducted a transcriptome analysis of Arabidopsis thaliana hsfA1a/hsfA1b double knock out mutants and wild-type plants. We used Affymetrix ATH1 microarrays (representing more than 24 000 genes) and conducted hybridizations for heat-treated or non-heat-treated leaf material of the respective lines. Heat stress had a severe impact on the transcriptome of mutant and wild-type plants. Approximately 11% of all monitored genes of the wild type showed a significant effect upon heat stress treatment. The difference in heat stress-induced gene expression between mutant and wild type revealed a number of HsfA1a/1b-regulated genes. Besides several heat shock protein and other stress-related genes, we found HSFA-1a/1b-regulated genes for other functions including protein biosynthesis and processing, signalling, metabolism and transport. By screening the profiling data for genes in biochemical pathways in which known HSF targets were involved, we discovered that at each step in the pathway leading to osmolytes, the expression of genes is regulated by heat stress and in several cases by HSF. Our results document that in the immediate early phase of the heat shock response HSF-dependent gene expression is not limited to known stress genes, which are involved in protection from proteotoxic effects. HsfA1a and HsfA1b-regulated gene expression also affects other pathways and mechanisms dealing with a broader range of physiological adaptations to stress.
To find evidence for a connection between heat stress response, oxidative stress, and common stress tolerance, we studied the effects of elevated growth temperatures and heat stress on the activity and expression of ascorbate peroxidase (APX). We compared wild-type Arabidopsis with transgenic plants overexpressing heat shock transcription factor 3 (HSF3), which synthesize heat shock proteins and are improved in basal thermotolerance. Following heat stress, APX activity was positively affected in transgenic plants and correlated with a new thermostable isoform, APX S . This enzyme was present in addition to thermolabile cytosolic APX1, the prevalent isoform in unstressed cells. In HSF3-transgenic plants, APX S activity was detectable at normal temperature and persisted after severe heat stress at 44°C. In nontransgenic plants, APX S was undetectable at normal temperature, but could be induced by moderate heat stress. The mRNA expression profiles of known and three new Apx genes were determined using real-time PCR. Apx1 and Apx2 genes encoding cytosolic APX were heat stress and HSF dependently expressed, but only the representations of Apx2 mRNA met the criteria that suggest identity between APX S and APX2: not expressed at normal temperature in wild type, strong induction by heat stress, and HSF3-dependent expression in transgenic plants. Our data suggest that Apx2 is a novel heat shock gene and that the enzymatic activity of APX2/APX S is required to compensate heat stress-dependent decline of APX1 activity in the cytosol. The functional roles of modulations of APX expression and the interdependence of heat stress and oxidative stress response and signaling mechanisms are discussed.There is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress. Both stresses induce pathways resulting in the expression/accumulation of heat shock proteins (HSP) in plants (Banzet et al., 1998; Dat et al., 1998; Schett et al., 1999; Lee et al., 2000) and, in fruit fly (Drosophila melanogaster), transient expression of small HSP (sHSP) decreases sensitivity of cells to heat and hydrogen peroxide stresses (Mehlen et al., 1993). On the other hand, there is also evidence that heat induces oxidative stress and/or expression of antioxidative enzymes in bacteria (Morgan et al., 1986), yeast (Davidson et al., 1996), and plants (Gong et al., 1998;Storozhenko et al., 1998; Lee et al., 1999). Thermotolerance can be generated by compounds that induce oxidative bursts, and very short heat pulses can induce bursts of superoxide and/or hydrogen peroxide (Vallelian-Bindschedler et al., 1998).Reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide, and hydroxyl radicals are continuously formed in aerobic organisms. Excess production of ROS causes oxidative damage of cellular components, and their involvement in a number of biotic and abiotic stresses is well documented (Bowler et al., 1992). Accumulation of hydrogen peroxide has not only negative consequences on living c...
The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H(2)O(2), is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H(2)O(2) in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37 degrees C) or by treatment with H(2)O(2), butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H(2)O(2) is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H(2)O(2)-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H(2)O(2) is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H(2)O(2 )was unable to induce this complex suggesting that H(2)O(2) is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37 degrees C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling.
Heat shock factors (HSFs) are transcriptional regulators of the heat shock response. The major target of HSFs are the genes encoding heat shock proteins (HSPs), which are known to have a protective function that counteracts cytotoxic effects. To identify other HSF target genes, which may be important determinants for the generation of stress tolerance in Arabidopsis, we screened a library enriched for genes that are up-regulated in HSF3 (AtHsfA1b)-overexpressing transgenic plants (TPs). Galactinol synthase1 (GolS1) is one of the genes that is heat-inducible in wild type, but shows constitutive mRNA levels in HSF3 TPs. The generation and analysis of TPs containing GolS1-promoter::b-glucuronidase-reporter gene constructs showed that, upon heat stress, the expression is transcriptionally controlled and occurs in all vegetative tissues. Functional consequences of GolS1 expression were investigated by the quantification of raffinose, stachyose, and galactinol contents in wild type, HSF3 TPs, and two different GolS1 knockout mutants (gols1-1 and gols1-2). This analysis demonstrates that (1) raffinose content in leaves increases upon heat stress in wild-type but not in the GolS1 mutant plants; and (2) the level of raffinose is enhanced and stachyose is present at normal temperature in HSF3 TPs. These data provide evidence that GolS1 is a novel HSF target gene, which is responsible for heat stress-dependent synthesis of raffinose, a member of the raffinose family oligosaccharides. The biological function of this osmoprotective substance and the role of HSF-dependent genes in this biochemical pathway are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.