Curcumin (CCM) is a well-known phytocompound and food component found in the spice turmeric and has multifunctional bioactivities. However, few studies have examined its effects on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of CCM supplementation on fatigue and ergogenic function following physical challenge in mice. Male ICR mice were divided into four groups to receive vehicle or CCM (180 μg/mL) by oral gavage at 0, 12.3, 24.6, or 61.5 mL/kg/day for four weeks. Exercise performance and anti-fatigue function were evaluated after physical challenge by forelimb grip strength, exhaustive swimming time, and levels of physical fatigue-associated biomarkers serum lactate, ammonia, blood urea nitrogen (BUN), and glucose and tissue damage markers such as aspartate transaminase (AST), alanine transaminase (ALT), and creatine kinase (CK). CCM supplementation dose-dependently increased grip strength and endurance performance and significantly decreased lactate, ammonia, BUN, AST, ALT, and CK levels after physical challenge. Muscular glycogen content, an important energy source for exercise, was significantly increased. CCM supplementation had few subchronic toxic effects. CCM supplementation may have a wide spectrum of bioactivities for promoting health, improving exercise performance and preventing fatigue.
Polygonatum alte-lobatum Hayata, a rhizomatous perennial herb, belongs to the Liliaceae family and is endemic to Taiwan. We investigated the antioxidant and anti-fatigue activities of P. alte-lobatum in exercised rats. Levels of polyphenols, flavonoids and polysaccharides and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity were measured in extracts of P. alte-lobatum (EPA). Sprague-Dawley rats were randomly divided into four groups for 8-week treatment with vehicle (control) and low-, medium-, and high-dose EPA (LEPA, MEPA, HEPA; 0, 75, 150, and 375 mg/kg/day, respectively). Exercise performance was evaluated by exhaustive treadmill exercise time and by changes in body composition and biochemical variables at the end of the experiment. EPA contained polyphenols, flavonoids and polysaccharides, with polysaccharide content at least 26 times greater than that of polyphenols and flavonoids. Trend analysis revealed that EPA dose-dependently scavenged DPPH free radicals. EPA treatment dose-dependently increased endurance running time to exhaustion and superoxide dismutase activity and total antioxidant ability of blood. EPA dose-dependently decreased serum urea nitrogen and malondialdehyde levels after exercise. Hepatic glycogen content, an important energy source for exercise, was significantly increased with EPA treatment. EPA could be a potential agent with an anti-fatigue pharmacological function.
Allyl isothiocyanate (AITC) has been found to present sources from consumed cruciferous vegetables. AITC is known to possess pharmacological and anticancer activities. The present study was designed to test the hypothesis that AITC suppressed the invasion and migration of epidermal growth factor (EGF)-stimulated HT29 cells and to elucidate the mechanisms for the antimetastatic abilities in vitro. The invasion and migration of EGF-stimulated HT29 cells were determined individually by Transwell cell invasion and wound-healing assays. Our results showed that AITC effectively inhibited both the invasive and migratory ability of HT29 cells. Furthermore, AITC downregulated the protein levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and mitogen-activated protein kinases (MAPKs) (p-JNK, p-ERK and p-p38) by western blot analysis in HT29 cells following EGF induction. Thus, the metastatic responses in AITC-treated HT29 cells after EGF stimulation were mediated by the MMP-2/-9 and MAPK signaling pathways. We also used gene expression microarrays to investigate the gene levels related to cell growth, G-protein coupled receptor, angiogenesis, cell adhesion, cell cycle and mitosis, cell migration, cytoskeleton organization, DNA damage and repair, transcription and translation, EGFR and PKB/mTOR signals. In summary, it is possible that AITC suppresses the invasion and migration of EGF-induced HT29 cells, resulting from MMP-2/-9 and MAPKs. Hence, AITC may be beneficial in the treatment of human colorectal adenocarcinoma in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.