Oxymatrine, the main alkaloid component in the traditional Chinese herbal medicine Sophora japonica (Sophora flavescens Ait), has been reported to have antitumor properties. However, the mechanisms of action in human pancreatic cancer are not well established to date. In the present study, we investigated the antiangiogenic effects of oxymatrine on human pancreatic cancer as well as the possible mechanisms involved. The results of the cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. To investigate the possible mechanisms involved in these events, we performed western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis. The results revealed that oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the antiproliferative and antiangiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice. In conclusion, our studies for the first time suggest that oxymatrine has potential antitumor effects on pancreatic cancer via suppression of angiogenesis, probably through regulation of the expression of the NF-κB-mediated VEGF signaling pathway.
Epidemiological evidence has linked the development and progression of several cancers including melanoma with obesity. However, whether obesity impinges on responses of cancer cells to treatment remains less understood. Here we report that human adipocytes contribute to resistance of melanoma cells to various therapeutic agents. Exposure to media from adipocyte cultures (adipocyte media) increased cell proliferation and reduced sensitivity of melanoma cells to apoptosis induced by diverse chemotherapeutic drugs, including the DNA-damaging drug cisplatin, the microtubuletargeting agent docetaxel, and the histone deacetylase inhibitor SAHA. This was associated with increased activation of PI3K/Akt and MEK/ERK signaling, and was attenuated by a PI3K or MEK inhibitor. The effect of adipocyte media on melanoma cells was, at least in part, due to the interaction between the adipokine leptin and its long form receptor OB-Rb, in that immunodepletion of leptin in adipocyte media or siRNA knockdown of OB-Rb in melanoma cells reversed the increase in Akt and ERK activation, enhancement in cell proliferation, and importantly, protection of melanoma cells against the drugs. In support, recombinant leptin partially recapitulated the effect of adipocyte media on melanoma cells. Of note, OB-Rb was increased on the surface of melanoma cells compared to melanocytes, whereas leptin short form receptors appeared to be suppressed post-transcriptionally, suggesting that OB-Rb was selectively upregulated in melanoma cells. Collectively, these results indicate that adipocytes contribute to the resistance of melanoma cells to chemotherapeutic drugs and agents targeting the PI3K/Akt and MEK/ERK pathways, and suggest that inhibition of the leptin/ OB-Rb system may be useful to improve the efficacy of multiple therapeutic approaches in the treatment of melanoma.
Abstract. Capsaicin, one of the major pungent ingredients found in red peppers, has been recently demonstrated to induce apoptosis in various malignant cell lines through an unclear mechanism. In this study, the effect of capsaicin on proliferation and apoptosis in the human pancreatic cancer cell line PANC-1 and its possible mechanism(s) of action were investigated. The results of a Cell Counting Kit-8 (CCK-8) assay revealed that capsaicin significantly decreased the viability of PANC-1 cells in a dose-dependent manner. Capsaicin induced G0/G1 phase cell cycle arrest and apoptosis in PANC-1 cells as demonstrated by a flow cytometric assessment. Caspase-3 expression at both the protein and mRNA level was promoted following capsaicin treatment. Furthermore, we revealed that phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473) in PANC-1 cells were downregulated in response to capsaicin. Moreover, capsaicin gavage significantly inhibited the growth of pancreatic cancer PANC-1 cell xenografts in athymic nude mice. An increased number of TUNEL-positive cells and cleaved caspase-3 were observed in capsaicin-treated mice. In vivo, capsaicin downregulated the expression of phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473).In conclusion, we have demonstrated that capsaicin is an inhibitor of growth of PANC-1 cells, and downregulation of the phosphoinositide 3-kinase/Akt pathway may be involved in capsaicin-induced apoptosis in vitro and in vivo.
Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990) with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153), a marker of the endoplasmic-reticulum-stress- (ERS-) mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78), phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK), and phosphoeukaryotic initiation factor-2α (phospho-eIF2α), activating transcription factor 4 (ATF4) and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.
Abstract. In this study, we investigated the apoptotic effect of emodin on human pancreatic cancer cell line Panc-1 in vitro and in vivo as well as the possible mechanisms involved. In vitro, human pancreatic cancer cell line Panc-1 was exposed to varying concentrations of emodin (0,10,20, 40 or 80 µmol/l). Then the mitochondrial membrane potential (MMP) was analyzed by JC-1 staining, cell apoptosis was analyzed by flow cytometry (FCM) and cell proliferation was analyzed by MTT. In vivo, nude mice orthotopically implanted were randomly divided into five groups to receive treatments by different doses of emodin: control group (normal saline 0.2 ml), E 10 group (emodin 10 mg/kg), E 20 group (emodin 20 mg/kg), E 40 group (emodin 40 mg/kg) and E 80 group (emodin 80 mg/kg). Each mouse was treated 5 times by intraperitoneal injection of emodin every 3 days. During the treatment, the feeding stuff was recorded. One week after the last treatment, we recorded the body weight and the maximum diameter of tumor in each group before the mice were sacrificed. Then the cell apoptosis of the tumor was tested by TUNEL assay. The results in vitro showed that the MMP of the cells declined and the apoptosis rate increased with the emodin concentration increasing and the cell proliferation of each group was inhibited in a dose-and time-dependent manner by emodin. The feeding stuff curve did not decline significantly in E 40 group and the apoptosis rate of the tumor cells in this group was higher than the lower-dose groups. Taken together, our results demonstrate that emodin may induce the pancreatic cancer cell apoptosis via declining the MMP and a moderate dose of emodin improved the living state of the model mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.