The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
BackgroundRegulatory T cells (Tregs) are highly prevalent in tumor tissue and can suppress effective anti-tumor immune responses. However, the source of the increased tumor-infiltrating Tregs and their contribution to cancer progression remain poorly understood.Methodology/Principal FindingWe here investigated the frequency, phenotype and trafficking property of Tregs and their prognostic value in patients with hepatocellular carcinoma (HCC). Our results showed that FoxP3+ Tregs highly aggregated and were in an activated phenotype (CD69+HLA-DRhigh) in the tumor site, where they can suppress the proliferation and INF-γ secretion of CD4+CD25− T cells. These tumor-infiltrating Tregs could be selectively recruited though CCR6-CCL20 axis as illustrated by (a) high expression of CCR6 on circulating Tregs and their selective migration to CCR6 ligand CCL20, and (b) correlation of distribution and expression between tumor-infiltrating Tregs and intratumoral CCL20. In addition, we found that the number of tumor-infiltrating Tregs was associated with cirrhosis background (P = 0.011) and tumor differentiation (P = 0.003), and was an independent prognostic factor for overall survival (HR = 2.408, P = 0.013) and disease-free survival (HR = 2.204, P = 0.041). The increased tumor-infiltrating Tregs predicted poorer prognosis in HCC patients.ConclusionsThe CCL20-CCR6 axis mediates the migration of circulating Tregs into tumor microenvironment, which in turn results in tumor progression and poor prognosis in HCC patients. Thus, blocking CCL20-CCR6 axis-mediated Treg migration may be a novel therapeutic target for HCC.
Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.