BackgroundRegulatory T cells (Tregs) are highly prevalent in tumor tissue and can suppress effective anti-tumor immune responses. However, the source of the increased tumor-infiltrating Tregs and their contribution to cancer progression remain poorly understood.Methodology/Principal FindingWe here investigated the frequency, phenotype and trafficking property of Tregs and their prognostic value in patients with hepatocellular carcinoma (HCC). Our results showed that FoxP3+ Tregs highly aggregated and were in an activated phenotype (CD69+HLA-DRhigh) in the tumor site, where they can suppress the proliferation and INF-γ secretion of CD4+CD25− T cells. These tumor-infiltrating Tregs could be selectively recruited though CCR6-CCL20 axis as illustrated by (a) high expression of CCR6 on circulating Tregs and their selective migration to CCR6 ligand CCL20, and (b) correlation of distribution and expression between tumor-infiltrating Tregs and intratumoral CCL20. In addition, we found that the number of tumor-infiltrating Tregs was associated with cirrhosis background (P = 0.011) and tumor differentiation (P = 0.003), and was an independent prognostic factor for overall survival (HR = 2.408, P = 0.013) and disease-free survival (HR = 2.204, P = 0.041). The increased tumor-infiltrating Tregs predicted poorer prognosis in HCC patients.ConclusionsThe CCL20-CCR6 axis mediates the migration of circulating Tregs into tumor microenvironment, which in turn results in tumor progression and poor prognosis in HCC patients. Thus, blocking CCL20-CCR6 axis-mediated Treg migration may be a novel therapeutic target for HCC.
The existence of microvascular invasion (MVI) formation is one of the most important risk factors predicting poor outcome in hepatocellular carcinoma (HCC) and its mechanism remains largely unknown. Epithelial-Mesenchymal Transition (EMT) has been suggested to be involved in many steps of the invasion-metastasis cascade. To elucidate the possible contribution of EMT to MVI, we initially evaluated the expression of 8 EMT-related transcription factors (TFs) in HCC patients with or without MVI and found that FOXC1 expression was significantly higher in patients with MVI than those without MVI (P < 0.05). Knockdown of FOXC1 expression in HCC cells resulted in a partial conversion of their EMT progresses, mainly regulating the mesenchymal component. Ectopic expression of snail, twist or TGF-β1 could induce expression of FOXC1, but none of the expression of snail, twist, slug or TGF-β was consistently down-regulated in response to FOXC1 silencing, suggesting FOXC1 might operate the downstream of other EMT regulators. In addition, knockdown of FOXC1 expression led to cytoskeleton modification accompanied by decreased ability of cell proliferation, migration, and invasion. Meanwhile, some matrix metalloproteinases (MMPs) and VEGF-A were also simultaneously down-regulated. Together, our findings demonstrate that FOXC1 is one of candidate predictive markers of MVI, and that inhibition of FOXC1 expression can partially reverse EMT program, offering a potential molecular therapeutic target for reducing tumor metastasis in HCC patients.
Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8(+) cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3(+), CD4(+), CD8(+), and FoxP3(+) TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan-Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3(+) and CD4(+) TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.