While metal organic frameworks (MOFs) have been extensively explored as a platform for developing porous metal oxides, another intriguing direction is to use MOFs as precursors to prepare carbonaceous materials.
To investigate effects of modification of MOFs on removal of acid dyes via adsorption and photodegradation, zirconium-based MOF, UiO-66, and its derivatives were synthesized. UiO-66 derivatives were prepared by using amine (NH2)-containing ligand and incorporating carbon nanotubes (CNTs) and reduced graphene oxide (RGO). During the synthesis UiO-66-NH2, UiO-66-CNT and UiO-66-RGO, were obtained, respectively. While UiO-66-NH2 showed the enhanced adsorption capacity for acid dyes owing to the electrostatic attraction, CNTs were found to be the most effective addition to enhance the adsorption of acid dyes. However, the addition of RGO in UiO-66 (to form UiO-66-RGO) exhibited the highest removal efficiency via photodegradation compared to UiO-66 and other derivatives probably attributed to its unique layered morphology. The presence of NH2, CNTs and RGO not only significantly improved the adsorption capacity for acid dyes but also enabled these UiO-66 derivatives to exhibit photocatalytic activity under visible light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.