Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.
In the present study, four new steroidal saponins, namely vernoniamyoside A–D (1–4), together with the two known steroidal saponins vernoamyoside D (5) and vernonioside B2 (6) were isolated from the ethanol extract of leaves of the African medicinal plant Vernonia amygdalina Del. (Asteraceae). Their structures were demonstrated by spectral analyses along with 1D and 2D nuclear magnetic resonance (NMR) techniques and mass spectrometry (MS). The cytotoxicity of the compounds was also tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method on the cell lines Hela, MCF-7, BT-549 and MDA-MB-231. Vernoniamyoside A, vernoniamyoside B, and vernonioside B2 showed cytotoxicity towards BT-549 cell lines. Vernoniamyoside C, vernoniamyoside D and vernoamyoside D showed different levels of cytotoxic activities.
In an effort to develop dual PPARalpha/gamma activators with improved therapeutic efficacy, a series of diaryl alpha-ethoxy propanoic acid compounds comprising two aryl groups linked by rigid oxime ether or isoxazoline ring were designed and synthesized and their biological activities were examined. Most of the compounds possessing an oxime ether linker were more potent PPARgamma activators than the lead PPARalpha/gamma dual agonist, tesaglitazar in vitro. Compound 18, one of the derivatives with an oxime ether linker, was found to selectively transactivate PPARgamma (EC 50 = 0.028 microM) over PPARalpha (EC 50 = 7.22 microM) in vitro and lower blood glucose in db/ db mice more than muraglitazar after oral treatment for 11 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.