Renal cell carcinoma (RCC) is known for its multidrug resistance. Using data obtained from the cancer transcriptome database Oncomine and the proteome database The Human Protein Atlas, we identified the repression of organic cation transporter OCT2 as a potential factor contributing to oxaliplatin resistance in RCC. By analyzing OCT2 expression in collected patient tissues and commercial tissue microarray specimens, we demonstrated OCT2 repression in RCC at both transcription and protein levels. Epigenetic analysis revealed that the repressed OCT2 promoter in RCC is characterized by hypermethylated CpG islands and the absence of H3K4 methylation. Further mechanistic studies showed that DNA hypermethylation blocked MYC activation of OCT2 by disrupting its interaction with the E-Box motif, which prevented MYC from recruiting MLL1 to catalyze H3K4me3 at the OCT2 promoter and resulted in repressed OCT2 transcription. Targeting this mechanism, we designed a sequential combination therapy and demonstrated that epigenetic activation of OCT2 by decitabine sensitizes RCC cells to oxaliplatin both in vitro and in xenografts. Our study highlights the potential of translating "omics" data into the development of targeted therapies.
In accordance with earlier reviews, we found that coffee consumption increases the risk of urinary tract cancer by approximately 20%. The consumption of tea seems not to be related to an increased risk of urinary tract cancer.
Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na(+)-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.
C-terminus kinesin motor KIFC1 is known for centrosome clustering in cancer cells with supernumerary centrosomes. KIFC1 crosslinks and glides on microtubules (MT) to assist normal bipolar spindle formation to avoid multi-polar cell division, which might be fatal. Testis cancer is the most common human cancer among young men. However, the gene expression profiles of testis cancer is still not complete and the expression of the C-terminus kinesin motor KIFC1 in testis cancer has not yet been examined. We found that KIFC1 is enriched in seminoma tissues in both mRNA level and protein level, and is specifically enriched in the cells that divide actively. Cell experiments showed that KIFC1 may be essential in cell division, but not essential in metastasis. Based on subcellular immuno-florescent staining results, we also described the localization of KIFC1 during cell cycle. By expressing ΔC-FLAG peptide in the cells, we found that the tail domain of KIFC1 might be essential for the dynamic disassociation of KIFC1, and the motor domain of KIFC1 might be essential for the degradation of KIFC1. Our work provides a new perspective for seminoma research.
The aim of this study was to determine the expression and function of proton-coupled oligopeptide transporters (POTs) in spleen and macrophages, and their contribution to innate immune response induced by bacterial peptidomimetics γ-iE-DAP and MDP, Quantitative real-time PCR (qRT-PCR) and Western blot results revealed the mRNA and protein expression of PepT2, PhT1 and PhT2, but not PepT1, in the spleen of mice and human. In comparison to lymphocytes of the spleen, macrophages had higher transcript levels of PepT2 and PhT2. The cellular uptake of Ala-Lys-AMCA in mouse splenic macrophages was pH dependent with maximum uptake at pH 6.0, and the kinetic parameters were Km = 75.5 ± 14.3µM and Vmax = 25.4 ± 2.1 pmol/min per mg protein. The uptake of Ala-Lys-AMCA by mouse splenic macrophages was not inhibited by histidine, but was significantly inhibited by Glycyl-Sarcosine (GlySar) and carnosine (P<0.01), and by bacterial peptidomimetics γ-iE-DAP and MDP, ligands of nucleotide-binding oligomerization domain (NOD)-containing proteins. Carnosine and GlySar, but not histidine, attenuated the inflammatory response induced by γ-iE-DAP and MDP in mouse splenic macrophages. Functional expression of POTs was also demonstrated in THP-1 cells and dipeptides reduced the immune response induced by γ-iE-DAP. In conclusion, our findings are novel by providing important information on the molecular and functional expression of POTs in spleen. Moreover, it appears that the PepT2-mediated uptake of γ-iE-DAP and MDP in macrophages further contributes to the innate immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.