We performed a genome-wide association study of esophageal squamous cell carcinoma (ESCC) by genotyping 1,077 individuals with ESCC and 1,733 control subjects of Chinese Han descent. We selected 18 promising SNPs for replication in an additional 7,673 cases of ESCC and 11,013 control subjects of Chinese Han descent and 303 cases of ESCC and 537 control subjects of Chinese Uygur-Kazakh descent. We identified two previously unknown susceptibility loci for ESCC: PLCE1 at 10q23 (P(Han combined for ESCC) = 7.46 x 10(-56), odds ratio (OR) = 1.43; P(Uygur-Kazakh for ESCC) = 5.70 x 10(-4), OR = 1.53) and C20orf54 at 20p13 (P(Han combined for ESCC) = 1.21 x 10(-11), OR = 0.86; P(Uygur-Kazakh for ESCC) = 7.88 x 10(-3), OR = 0.66). We also confirmed association in 2,766 cases of gastric cardia adenocarcinoma cases and the same 11,013 control subjects (PLCE1, P(Han for GCA) = 1.74 x 10(-39), OR = 1.55 and C20orf54, P(Han for GCA) = 3.02 x 10(-3), OR = 0.91). PLCE1 and C20orf54 have important biological implications for both ESCC and GCA. PLCE1 might regulate cell growth, differentiation, apoptosis and angiogenesis. C20orf54 is responsible for transporting riboflavin, and deficiency of riboflavin has been documented as a risk factor for ESCC and GCA.
Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10(-8), and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19-1.40) and P= 7.63 × 10(-10). An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
MTERFD1, also named MTERF3 (mitochondrial transcription termination factor 3), regulates transcription of the mitochondrial genome. MTERFD1 is a mitochondrial protein that represses mammalian mitochondrial DNA initiation in vivo. In this study, we found that MTERFD1 gene amplification and high expression existed in many different types of cancer. Significantly, increased expression of MTERFD1 gene was correlated with lower overall survival rate in clinical. Overexpression of MTERFD1 gene promoted to tumor cell growth in vivo and in vitro and increased the percentage of cells in S phase. In conclusion, our data firstly indicated the MTERFD1 was an oncogene in many types of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.