Bone morphogenetic protein 9 (BMP9), as one of the most potent osteogenic factors, is a promising cytokine for bone tissue engineering. Wnt11 can regulate the development of the skeletal system and is related to high bone mass syndrome. However, the effect of Wnt11 on BMP9-induced osteogenic differentiation remains unknown. In this study, we investigated the relationship between Wnt11- and BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs). We recapitulated the osteogenic potential of BMP9 in C3H10T1/2 cells. The messenger RNA expression of Wnt11 is detectable in the available progenitor cells, and BMP9 can obviously increase the protein level of Wnt11 in these cells. Exogenous Wnt11 potentiates the effect of BMP9 on increasing alkaline phosphatase (ALP) activities, the expression of osteopontin (OPN), and Runt-related transcription factor 2 (Runx2), so does matrix mineralization in C3H10T1/2 cells. Although Wnt11 cannot increase the BMP9-induced ectopic bone formation, it can increase the bone density induced by BMP9 apparently. Wnt11 increases the level of p-Smad1/5/8, as well as p-p38. Meanwhile, Wnt11 promotes the effect of BMP9 on increasing the levels of p-Smad1/5/8 and p-p38. Inhibition of p38 decreases the BMP9-induced ALP activities, the expression of OPN, and the mineralization in C3H10T1/2 cells. However, all of these effects of the p38 inhibitor on BMP9-induced osteogenic markers can be almost reversed by the overexpression of Wnt11. Our findings suggested that Wnt11 can enhance the osteogenic potential of BMP9 in MSCs, and this effect may be partly mediated through enhancing BMPs/Smads and the p38 MAPK signal, which was induced by BMP9.
Bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic factors, which may be a potential candidate for bone tissue engineering. However, the osteogenic capacity of BMP9 still need to be further enhanced. In this study, we determined the effect of Wnt10b on BMP9-induced osteogenic differentiation in mesenchymal stem cell (MSCs) and the possible mechanism underlying this process. We introduced the polymerase chain reaction (PCR), Western blot analysis, histochemical stain, ectopic bone formation, and microcomputed tomography analysis to evaluate the effect of Wnt10b on BMP9-induced osteogenic differentiation. Meanwhile, PCR, Western blot analysis, chromatin immunoprecipitation, and immunoprecipitation were used to analyze the possible relationship between BMP9 and Wnt10b. We found that BMP9 upregulates Wnt10b in C3H10T1/2 cells. Wnt10b increases the osteogenic markers and bone formation induced by BMP9 in C3H10T1/2 cells, and silencing Wnt10b decreases these effects of BMP9. Meanwhile, Wnt10b enhances the level of phosphorylated Smad1/5/8 (p-Smad1/5/8) induced by BMP9, which can be reduced by silencing Wnt10b. On the contrary, Wnt10b inhibits adipogenic markers induced by BMP9, which can be decreased by silencing Wnt10b.Further analysis indicated that BMP9 upregulates cyclooxygenase-2 (COX-2) and phosphorylation of cAMP-responsive element binding (p-CREB) simultaneously. COX-2 potentiates the effect of BMP9 on increasing p-CREB and Wnt10b, while silencing COX-2 decreases these effects. p-CREB interacts with p-Smad1/5/8 to bind the promoter of Wnt10b in C3H10T1/2 cells. Our findings suggested that Wnt10b can promote BMP9-induced osteogenic differentiation in MSCs, which may be mediated through enhancing BMP/Smad signal and reducing adipogenic differentiation; BMP9 may upregulate Wnt10b via the COX-2/p-CREB-dependent manner. K E Y W O R D S adipogenic differentiation, BMP/Smad, bone morphogenetic protein 9, cAMP-responsive element binding, cyclooxygenase-2, osteogenic differentiation, Wnt10b J Cell Biochem. 2019;120:9572-9587. wileyonlinelibrary.com/journal/jcb 9572 |
Despite advances in screening and treatment, colon cancer remains one of the leading causes of cancer-related death. Finding novel and useful drug treatment targets is also an urgent need for clinical applications. Tetrandrine (Tet) is extracted from the Chinese medicinal herbal medicine, which is a well-known calcium blocker with a variety of pharmacological activities, including anti-cancer. In this study, we recruited cell viability assay, flow cytometry analysis, cloning formation to confirm that Tet can inhibit the proliferation of SW620 cells, and induce apoptosis. Mechanically, we confirmed that Tet up-regulates the mRNA and protein level of BMP9 in SW620 cells. Over-expression BMP9 enhances the anti-cancer effects of Tet in SW620 cells, but these effects can be partly reversed by silencing BMP9. Also, Tet reduces phosphorylation of Aktl/2/3 in SW620 cells, which could be elevated by overexpressed BMP9 and impaired by silencing BMP9. Furthermore, we demonstrated that Tet reduces phosphorylated PTEN, which can be promoted by overexpressed BMP9, analogously also be attenuated through silencing BMP9. Finally, we introduced a xenograft tumor model to investigate the anti-proliferative effect of Tet, further to explore the effects of BMP9 and PTEN in SW620 cells. Our findings suggested that the anti-cancer activity of Tet in SW620 cells may be mediated partly by up-regulating BMP9, followed by inactivation PI3K/Akt through up-regulating PTEN at least.
Colon cancer is one of the most common malignancies. Although there has been great development in treatment regimens over the last few decades, its prognosis remains poor. There is still a clinical need to find new drugs for colon cancer. Evodiamine (Evo) is a quinolone alkaloid extracted from the traditional herbal medicine plant Evodia rutaecarpa. In the present study, CCK-8, flow cytometry, reverse transcription quantitative polymerase chain reaction, western blot analysis and a xenograft tumor model were used to evaluate the anti-cancer activity of Evo in human colon cancer cells and determine the possible mechanism underlying this process. It was revealed that Evo exhibited prominent anti-proliferation and apoptosis-inducing effects in HCT116 cells. Bone morphogenetic protein 9 (BMP9) was notably upregulated by Evo in HCT116 cells. Exogenous BMP9 potentiated the anti-cancer activity of Evo, and BMP9 silencing reduced this effect. In addition, HIF-1α was also upregulated by Evo. The anticancer activity of Evo was enhanced by HIF-1α, but was reduced by HIF-1α silencing. BMP9 potentiated the effect of Evo on the upregulation of HIF-1α, and enhanced the antitumor effect of Evo in colon cancer, which was clearly reduced by HIF-1α silencing. In HCT116 cells, Evo increased the phosphorylation of p53, which was enhanced by BMP9 but reduced by BMP9 silencing. Furthermore, the effect of Evo on p53 was potentiated by HIF-1α and reduced by HIF-1α silencing. The present findings therefore strongly indicated that the anticancer activity of Evo may be partly mediated by BMP9 upregulation, which can activate p53 through upregulation of HIF-1α, at least in human colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.