Amidst the conflicting experimental evidence of superiority of one over the other, we investigate the Sum and majority Vote combining rules in a two class case, under the assumption of experts being of equal strength and estimation errors conditionally independent and identically distributed. We show, analytically, that, for Gaussian estimation error distributions, Sum always outperforms Vote. For heavy tail distributions, we demonstrate by simulation that Vote may outperform Sum. Results on synthetic data confirm the theoretical predictions. Experiments on real data support the general findings, but also show the effect of the usual assumptions of conditional independence, identical error distributions, and common target outputs of the experts not being fully satisfied.
The performance of a multiple classifier system combining the soft outputs of k-Nearest Neighbour (k-NN) Classifiers by the product rule can be degraded by the veto effect. This phenomenon is caused by k-NN classifiers estimating the class a posteriori probabilities using the maximum likelihood method. We show that the problem can be minimised by marginalising the k-NN estimates using the Bayesian prior. A formula for the resulting moderated k-NN estimate is derived. The merits of moderation are examined on real data sets. Tests with different bagging procedures indicate that the proposed moderation method improves the performance of the multiple classifier system significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.