MicroRNA (miRNAs) is demonstrated to be present in the blood of humans and has been increasingly suggested as a novel biomarker for various pathological processes in the heart, including myocardial infarction, myocardial remodeling and progression to heart failure. In this study, we aim to evaluate the diagnostic and prognostic value of circulating miR-328 and miR-134 in patients with acute myocardial infarction (AMI). Circulating levels of miR-328 and miR-134 were detected by quantitative real-time PCR in plasma samples from 359 AMI patients and 30 healthy volunteers. Concentrations of high-sensitivity cardiac troponin T (hs-cTnT) were measured using electrochemiluminescence-based methods. MiRNAs were assessed for discrimination of a clinical diagnosis of AMI and for association with primary clinical endpoint defined as a composite of cardiogenic death and development of heart failure within 6 months after infarction. Results showed that levels of plasma miR-328 and miR-134 were significantly higher in AMI patients than in healthy controls. Receiver operating characteristic curve analyses showed significant diagnostic value of miR-328 and miR-134 for AMI. However, neither of them was superior to hs-cTnT for the diagnosis. Additionally, increased miRNA levels were strongly associated with increased risk of mortality or heart failure within 6 months for miR-328 (OR 7.35, 95 % confidence interval 1.07-17.83, P < 0.001) and miR-134 (OR 2.28, 95 % confidence interval 1.03-11.32 P < 0.001). In conclusion, circulating miR-328 and miR-134 could be potential indicators for AMI, and the miRNA levels are associated with increased risk of mortality or development of heart failure.
Left ventricular remodeling after acute myocardial infarction (AMI) is associated with adverse prognosis. It is becoming increasingly clear that circulating miRNAs could be promising biomarkers for various pathological processes in the heart, including myocardial infarction, myocardial remodeling and progression to heart failure. In the present study, a total of 359 consecutive patients were recruited. Plasma samples were collected on admission. Echocardiographic studies were performed during the admission and at six months follow-up after AMI. Remodeling was defined as an at least 10% increase from baseline in the left ventricular end-diastolic volume. Plasma miRNA levels were assessed for association with six months mortality or development of heart failure. Results showed that levels of plasma miR-208b and miR-34a were significantly higher in patients with remodeling than those without. Increased miRNA levels were strongly associated with increased risk of mortality or heart failure within six months for miR-208b (OR 17.91, 95% confidence interval = 2.07–98.81, p = 0.003), miR-34a (OR 4.18, 95% confidence interval = 1.36–12.83, p = 0.012) and combination of the two miRNAs (OR 18.73, 95% confidence interval = 1.96–101.23, p = 0.000). The two miRNA panels reclassified a significant proportion of patients with a net reclassification improvement of 11.7% (p = 0.025) and an integrated discrimination improvement of 7.7% (p = 0.002). These results demonstrated that circulating miR-208b and miR-34a could be useful biomarkers for predicting left ventricular remodeling after AMI, and the miRNA levels are associated with increased risk of mortality or heart failure.
RIs of SII, PLR, NLR, LMR and MLR of people in central China were established and validated. It will benefit experimental design of the related studies and lead to better standardizations of SII, PLR, NLR, LMR and MLR for their clinical applications.
Background/Aims: The Hippo-Yap pathway is associated with tumor development and progression. However, little evidence is available concerning its role in cancer cell apoptosis and migration via mitochondrial homeostasis. Here, we identify mitochondrial fission as a regulator of the Hippo–Yap pathway in human rectal cancer tumorigenesis and metastasis. Methods: In this study, we performed loss-of function assays concerning Yap in RCC via shRNA. Cellular viability and apoptosis were measured via MTT, the TUNEL assay and trypan blue staining. Mitochondrial function was assessed via JC1 staining, the mPTP opening assay, mitochondrial respiratory function analysis, electron microscopy and immunofluorescence analysis of HtrA2/Omi. Mitophagy and mitochondrial fission were assessed via western blots and immunofluorescence. Cell migration was evaluated via the Transwell assay, wound-healing assay and immunofluorescence analysis of F-actin. The interaction between JNK and Yap was detected via co-immunoprecipitation and Yap recombinant mutagenic plasmid transfection. Western blots were used to analyze signaling pathways in conjunction with JNK inhibitors or HtrA2/Omi siRNA. Results: Yap is upregulated in human rectal cancer cells, where its expression correlates positively with cell survival and migration. Functional studies established that silencing of Yap drove JNK phosphorylation, which induced Drp1 activation and translocation to the surface of mitochondria, initiating mitochondrial fission. Excessive mitochondrial fission mediated HtrA2/Omi leakage from the mitochondria into the cytoplasm, where HtrA2/Omi triggered cellular apoptosis via the mitochondrial apoptosis pathway. Moreover, released HtrA2/Omi also phosphorylated cofilin and inhibited cofilin-mediated F-actin polymerization. F-actin collapse perturbed lamellipodia formation and therefore impaired cellular migration and invasion. Conclusion: Collectively, our results demonstrate that Hippo-Yap can serve as a tumor promoter in human rectal cancer and acts by restricting JNK/Drp1/mitochondrial fission/ HtrA2/Omi, with potential implications for new approaches to human rectal cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.