Background: The objective of this prospective, multicentre, observational cohort study was to evaluate the association between admission hypothermia and neonatal outcomes in very low-birth weight (VLBW) infants in multiple neonatal intensive care units (NICUs) in China. Methods: Since January 1, 2018, a neonatal homogeneous cooperative research platform-Shandong Neonatal Network (SNN) has been established. The platform collects clinical data in a prospective manner on preterm infants with birth weights (BWs) < 1500 g and gestational ages (GAs) < 34 weeks born in 28 NICUs in Shandong Province. These infants were divided into normothermia, mild or moderate/severe hypothermia groups according to the World Health Organization (WHO) classifications of hypothermia. Associations between outcomes and hypothermia were tested in a bivariate analysis, followed by a logistic regression analysis.
Necrotizing enterocolitis (NEC) is a life-threatening disease that occurs in premature infants. The aim of the present study was to investigate the effects of berberine, an isoquinoline alkaloid mainly used to treat digestive diseases, in a rat model of NEC. NEC models were established in newborn rats via inhalation of N 2 for 90 sec every 4 h and oral administration of 4 mg/kg/day lipopolysaccharides on days 0 and 1. Berberine was administered via oral gavage. In the NEC model group, Toll-like receptor (TLR)4, nuclear factor NF-κB (NF-κB), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 were upregulated. Symptoms of NEC in the berberine intervention group were significantly relieved, with a clear reduction in the incidence of NEC compared with the NEC group. TLR4, NF-κB, iNOS, TNF-α, IL-6 and IL-10 expression was decreased following berberine intervention. Furthermore, the expression of mucin-2 (MUC2) and RNA polymerase σ factor SigA (SIgA) were decreased in the NEC model group and increased following berberine intervention, when compared with the untreated group. It was also demonstrated that the incidence of NEC was reduced following berberine administration, possibly owing to changes in the inflammatory responses. The results of the current study support a potential therapeutic role of berberine for the treatment of NEC.
Background Overcrowding, abuse of antibiotics and increasing antimicrobial resistance negatively affect neonatal survival rates in developing countries. We aimed to define pathogens and their antimicrobial resistance (AMR) of early-onset sepsis (EOS), hospital-acquired late-onset sepsis (HALOS) and community-acquired late-onset sepsis (CALOS) in 25 neonatal intensive care units (NICUs) in China. Study design This retrospective descriptive study included pathogens and their AMR from all neonates with bloodstream infections (BSIs) admitted to 25 tertiary hospitals in China from January 1, 2017, and December 31, 2019. We defined EOS as the occurrence of BSI at or before 72 h of life and late-onset sepsis (LOS) if BSI occurred after 72 h of life. LOS were classified as CALOS if occurrence of BSI was ≤ 48 h after admission, and HALOS, if occurrence was > 48 h after admission. Results We identified 1092 pathogens of BSIs in 1088 infants from 25 NICUs. Thirty-two percent of all pathogens were responsible for EOS, 64.3% HALOS, and 3.7% CALOS. Gram-negative (GN) bacteria accounted for a majority of pathogens in EOS (56.7%) and HALOS (62.2%). The most frequent pathogens causing EOS were Escherichia coli (27.2%) and group B streptococcus (GBS; 14.6%) whereas in CALOS they were GBS (46.3%) and Staphylococcus aureus (41.5%). Klebsiella pneumoniae (27.9%), Escherichia coli (15.7%) and Fungi (12.8%) were the top three isolates in HALOS. Third-generation cephalosporin resistance rates in GN bacteria ranged from 9.7 to 55.6% in EOS and 26% to 63.3% in HALOS. Carbapenem resistance rates in GN bacteria ranged from 2.7 to 31.3% in HALOS and only six isolates in EOS were carbapenem resistant. High rates of multidrug resistance were observed in Klebsiella pneumoniae (60.7%) in HALOS and in Escherichia coli (44.4%) in EOS. All gram-positive bacteria were susceptible to vancomycin except for three Enterococcus faecalis in HALOS. All-cause mortality was higher among neonates with EOS than HALOS (7.4% VS 4.4%, [OR] 0.577, 95% CI 0.337–0.989; P = 0.045). Conclusions Escherichia coli, Klebsiella pneumoniae and GBS were the leading pathogens in EOS, HALOS and CALOS, respectively. The high proportion of pathogens and high degree of antimicrobial resistance in HALOS underscore understanding of the pathogenesis and emphasise the need to devise effective interventions in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.