IntroductionMental disorders represent the second cause of years lived with disability worldwide. Suicide mortality has been targeted as a key public health concern by the WHO. Smartphone technology provides a huge potential to develop massive and fast surveys. Given the vast cultural diversity of Mexico and its abrupt orography, smartphone-based resources are invaluable in order to adequately manage resources, services and preventive measures in the population. The objective of this study is to conduct a universal suicide risk screening in a rural area of Mexico, measuring also other mental health outcomes such as depression, anxiety and alcohol and substance use disorders.Methods and analysisA population-based cross-sectional study with a temporary sampling space of 9 months will be performed between September 2019 and June 2020. We expect to recruit a large percentage of the target population (at least 70%) in a short-term survey of Milpa Alta Delegation, which accounts for 137 927 inhabitants in a territorial extension of 288 km2.They will be recruited via an institutional call and a massive public campaign to fill in an online questionnaire through mobile-assisted or computer-assisted web app. This questionnaire will include data on general health, validated questionnaires including Well-being Index 5, Patient Health Questionnaire-9, Generalized Anxiety Disorder Scale 2, Alcohol Use Disorders Identification Test, selected questions of the Drug Abuse Screening Test and Columbia-Suicide Severity Rating Scales and Diagnostic and statistical manual of mental disorders (DSM-5) questions about self-harm.We will take into account information regarding time to mobile app response and geo-spatial location, and aggregated data on social, demographical and environmental variables. Traditional regression modelling, multilevel mixed methods and data-driven machine learning approaches will be used to test hypotheses regarding suicide risk factors at the individual and the population level.Ethics and disseminationEthical approval (002/2019) was granted by the Ethics Review Board of the Hospital Psiquiátrico Yucatán, Yucatán (Mexico). This protocol has been registered in ClinicalTrials.gov. The starting date of the study is 3 September 2019. Results will serve for the planning and healthcare of groups with greater mental health needs and will be disseminated via publications in peer-reviewed journal and presented at relevant mental health conferences.Trial registration numberNCT04067063.
Mathematical modeling of language in Artificial Intelligence is of the utmost importance for many research areas and technological applications. Over the last decade, research on text representation has been directed towards the investigation of dense vectors popularly known as word embeddings. In this paper, we propose a cognitive-emotional scoring and representation framework for text based on word embeddings. This representation framework aims to mathematically model the emotional content of words in short free-form text messages, produced by adults in follow-up due to any mental health condition in the outpatient facilities within the Psychiatry Department of Hospital Fundación Jiménez Díaz in Madrid, Spain. Our contribution is a geometrical-topological framework for Sentiment Analysis, that includes a hybrid method that uses a cognitively-based lexicon together with word embeddings to generate graded sentiment scores for words, and a new topological method for clustering dense vector representations in high-dimensional spaces, where points are very sparsely distributed. Our framework is useful in detecting word association topics, emotional scoring patterns, and embedded vectors’ geometrical behavior, which might be useful in understanding language use in this kind of texts. Our proposed scoring system and representation framework might be helpful in studying relations between language and behavior and their use might have a predictive potential to prevent suicide.
The relationship between suicidality, depression, anxiety, and well-being was explored in young adults (median age 20.7 years) from the State of Yucatan (Mexico), which has a suicide rate double that of other Mexican states. A cross-sectional study was carried out in 20 universities in Yucatan and 9,366 students were surveyed using validated questionnaires built into a smartphone app, applying partial least squares structural equation models. High suicide risk was assessed in 10.8% of the sample. Clinically relevant depression and anxiety levels were found in 6.6% and 10.5% of the sample, respectively, and 67.8% reported high well-being. Comparably higher levels of suicide risk, depression and anxiety, and lower well-being were found in women, who were also somewhat older than men in our study. Furthermore, path analysis in the structural equation model revealed that depression was the main predictor of suicidal behaviour as well as of higher anxiety levels and lower self-perceived well-being in the total sample and in both genders. Our findings draw attention to the association between suicidality, depression, anxiety, and well-being in Yucatan young adults and gender differences with this regard. Mental health screening via smartphone might be a useful tool to reach large populations and contribute to mental health policies, including regional suicide prevention efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.