Hepatocyte injury is a common pathological effect of cisplatin (CDDP) in various solid tumor therapies. Thus, strategies for minimizing CDDP toxicity are of great clinical interest. N-acetylcysteine (NAC), a known antioxidant, is often used as an antidote for acetaminophen overdose in the clinic due to its ability to increase the levels of glutathione (GSH). In the present study, the aim was to investigate the protective effects of NAC against CDDP-induced apoptosis in human-derived HepG2 cells. The results showed that upon exposure of the cells to CDDP, oxidative stress was significantly induced. DNA damage caused by CDDP was associated with cell apoptosis. NAC pre-treatment significantly reduced the malondialdehyde (MDA) levels and ameliorated the GSH modulation induced by CDDP. NAC also protected against DNA damage and cell apoptosis. These data suggest the protective role of NAC against hepatocyte apoptosis induced by CDDP was achieved through the inhibition of DNA damage and alterations of the redox status in human derived HepG2 cells. These results indicate that NAC administration may protect against CDDP-induced damage.
Zhuang (2020) Protective effect of apigenin magnesium complex on H 2 O 2 -induced oxidative stress and inflammatory responses in rat hepatic stellate cells,
We propose and demonstrate that strong optomechanical coupling can be achieved in a chain-like waveguide consisting of silicon nanorods. By employing quasi-bound states in the continuum and mechanical resonances at a frequency around 10 GHz, the optomechanical coupling rate can be above 2 MHz and surpass most microcavities. We have also studied cases with different optical wave numbers and size parameters of silicon, and a robust coupling rate has been verified, benefiting the experimental measurements and practical applications. The proposed silicon chain-like waveguide of strong optomechanical coupling may pave new ways for research on photon–phonon interaction with microstructures.
Doxorubicin (DOX) is a potent chemotherapeutic agent that is used against various types of human malignancies. However, the associated risk of cardiotoxicity has limited its clinical application. Danhong injection (DHI) is a Chinese medicine with multiple pharmacological activities and is widely used for treating cardiovascular diseases. The aim of the present study was to evaluate the potential protective effect of DHI on DOX-induced cardiotoxicity in vivo and to investigate the possible underlying mechanisms. First, a sensitive and reliable HPLC−ESI-Q-TOF-MS/MS method was developed to comprehensively analyze the chemical compositions of DHI. A total of 56 compounds were identified, including phenolic acids, tanshinones, and flavonoids. Then, a DOX-induced chronic cardiotoxicity rat model was established to assess the therapeutic effect of DHI. As a result, DHI administration prevented the reduction in body weight and heart weight, and improved electrocardiogram performance. Additionally, the elevated levels of serum biochemical indicators were reduced, and the activities of oxidative enzymes were restored in the DOX-DHI group. Network pharmacology analysis further revealed that these effects might be attributed to 14 active compounds (e.g., danshensu, salvianolic acid A, salvianolic acid B, rosmarinic acid, and tanshinone IIA) and 15 potential targets (e.g., CASP3, SOD1, NOS3, TNF, and TOP2A). The apoptosis pathway was highly enriched according to the KEGG analysis. Molecular docking verified the good binding affinities between the active compounds and the corresponding apoptosis targets. Finally, experimental validation demonstrated that DHI treatment significantly increased the Bcl-2 level and suppressed DOX-induced Bax and caspase-3 expression in rat heart tissue. Furthermore, DHI treatment obviously decreased the apoptosis rate of DOX-treated H9c2 cells. These results indicate that DHI attenuated DOX-induced cardiotoxicity via regulating the apoptosis pathway. The present study suggested that DHI is a promising agent for the prevention of DOX-induced cardiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.