Summary Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in-turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.
To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity.
Ustilaginoidea virens , the causal agent of rice false smut (RFS), has become one of the most devastating rice pathogens worldwide. As a group of essential virulence factors, the effectors in the filamentous fungus might play central roles in the interaction between plants and pathogens. However, little is known about the roles of individual effectors in U. virens virulence. In this study, we identified and characterized a small secreted cysteine-rich effector, SCRE2, in U. virens . SCRE2 was first confirmed as an effector through yeast secretion, protein localization and translocation assays, as well as its expression pattern during U. virens infection. Transient expression of SCRE2 in Nicotiana benthamiana suppressed necrosis-like defense symptoms triggered by the mammalian BAX and oomycete elicitin INF1 proteins. The ability of SCRE2 to inhibit immunity-associated responses in N. benthamiana , including elicitor-triggered cell death and oxidative burst, is further defined to a small peptide region SCRE2 68-85 through expressing a series of truncated proteins. Convincingly, ectopic expression of SCRE2 in the transgenic rice cells significantly inhibited pathogen-associated molecular pattern-triggered immunity including flg22- and chitin-induced defense gene expression and oxidative burst. Furthermore, the scre2 knockout mutant generated by the CRISPR/Cas9 system greatly attenuated in U. virens virulence to rice. Collectively, this study indicates that the effector SCRE2 is able to inhibit plant immunity and is required for full virulence of U. virens .
Summary Ustilaginoidins, toxic to plants, animals and human, are one of major types of mycotoxins produced by Ustilaginoidea virens. In this study, a gene cluster containing the polyketide synthase gene UvPKS1 was analysed via gene replacement and biochemical studies to determine ustilaginoidin biosynthetic pathway in U. virens. UvPKS1 was first proven to be responsible for the first step of ustilaginoidin biosynthesis, since neither ustilaginoidin derivatives nor intermediates were produced when UvPKS1 was deleted. Replacement of ugsO greatly reduced ustilaginoidin production but increased the ratios of dehydrogenated/hydrogenated ustilagioidin derivatives. The enhanced growth rate of the ΔugsO mutant indicates that accumulation of certain ustilaginoidin derivatives may adversely affect mycelial growth in U. virens. Deletion of ugsT encoding a putative MFS transporter disrupted the ability to generate ustilaginoidins. The ustilaginoidin derivatives produced in the ΔugsJ mutant all lack C3‐methyl, indicating that UgsJ is responsible for C3‐methylation. Only monomeric intermediates, such as 3‐methyl‐dihydro‐nor‐rubrofusarin, but no ustilaginoidin derivatives were generated in the ΔugsL mutant, indicating that UgsL is responsible for the dimerization of nor‐rubrofusarin derivatives to produce ustilaginoidins. However, ugsR2 deletion had no dramatic effect on ustilaginoidin biosynthesis. Together, biochemical analyses with bioinformatics and chemoinformatics uncover a multiple‐step enzyme‐catalysed pathway for ustilaginoidin biosynthesis in U. virens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.