The first example of a cytosolic, membrane-proximal, tribasic motif required for Golgi export to the plasma membrane is identified and characterized. This novel Golgi export signal can also mediate trafficking of a heterologous Golgi-resident protein, indicating that it functions as an autonomous Golgi export signal.
The gene encoding myopodin, an actin binding protein, is commonly deleted in invasive, but not in indolent, prostate cancers. There are conflicting reports on the effects of myopodin expression on prostate cancer cell migration and invasion. The recent recognition that myopodin is expressed as four different isoforms further complicates our understanding of how this potentially important invasive prostate cancer biomarker affects tumor cell migration and invasion. We now show that myopodin affects the chemokinetic, rather than the chemotactic, properties of PC3 prostate cancer cells. Furthermore, all myopodin isoforms can either increase or decrease PC3 cell migration in response to different chemokinetic stimuli. These migration properties were reflected by differences in cell morphology and the relative dependence on Rho-ROCK signaling pathways induced by the environmental stimuli. Truncation analysis determined that a unique 9-residue C-terminal sequence in the shortest isoform and the conserved, PDZ domain-containing N-terminal region of the long isoforms both contribute to the ability of myopodin to alter the response of PC3 cells to chemokinetic stimuli. Matrigel invasion assays also indicated that myopodin primarily affects the migration, rather than the invasion, properties of PC3 cells. The correlation between loss of myopodin expression and invasive prostate cancer therefore reflects complex myopodin interactions with pathways that regulate the cellular migration response to diverse signals that may be present in a tumor microenvironment.
Synaptopodin-2 (Synpo2), an actin-binding protein and invasive cancer biomarker, induces formation of complex stress fiber networks in the cell body and promotes PC3 prostate cancer cell migration in response to serum stimulation. The role of these actin networks in enhanced cancer cell migration is unknown. Using time-course analysis and live cell imaging of mock- and Synpo2-transduced PC3 cells, we now show that Synpo2 induces assembly of actin fibers near the cell periphery and Arp2/3-dependent lamellipodia formation. Lamellipodia formed in a non-directional manner or repeatedly changed direction, explaining the enhanced chemokinetic activity of PC3 cells in response to serum stimulation. Myosin contraction promotes retrograde flow of the Synpo2-associated actin filaments at the leading edge and their merger with actin networks in the cell body. Enhanced PC3 cell migration correlates with Synpo2-induced formation of lamellipodia and immature focal adhesions (FAs), but is not dependent on myosin contraction or FA maturation. The previously reported correlation between Synpo2-induced stress fiber assembly and enhanced PC3 cell migration therefore reflects the role of Synpo2 as a newly identified regulator of actin bundle formation and nascent FA assembly near the leading cell edge.
Myopodin is an actin-binding protein that promotes cancer cell migration in response to serum stimulation and is associated with invasive tumor development. To determine whether enhanced migration reflects changes in actin cytoskeleton remodeling, fluorescence confocal microscopy was used to examine the composition and morphology of filamentous actin structures in mock-transduced cells vs. stably transduced PC3 cells expressing human myopodin isoforms, and the chemokinetic response of cells was quantified using transwell assays. The same approaches were used to analyze the effects of external migration stimuli, actin polymerization inhibitors or deletion of the isoform-specific amino- and/or carboxy termini on cell migration and actin bundle formation. Results indicate that the termini of the myopodin isoforms differentially alter the formation of morphologically distinct F-actin networks that also differ in their myosin and myopodin staining patterns. Furthermore, enhanced cell migration was reduced by >50% when actin bundle formation was impaired by myopodin-truncation, low concentrations of an actin polymerization inhibitor, or in the absence of an external migration stimulus. Human myopodin isoforms are therefore potent regulators of stress fiber formation, inducing the formation of biochemically and morphologically distinct F-actin networks in the cell body whose presence directly correlates with increased cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.