Osteoimmunity is involved in regulating the balance of bone remodeling and resorption, and is essential for maintaining normal bone morphology. The interaction between immune cells and osteoclasts in the bone marrow or joint cavity is the basis of osteoimmunity, in which the macrophage-osteoclast axis plays a vital role. Monocytes or tissue-specific macrophages (macrophages resident in tissues) are an important origin of osteoclasts in inflammatory and immune environment. Although there are many reports on macrophages and osteoclasts, there is still a lack of systematic reviews on the macrophage-osteoclast axis in osteoimmunity. Elucidating the role of the macrophage-osteoclast axis in osteoimmunity is of great significance for the research or treatment of bone damage caused by inflammation and immune diseases. In this article, we introduced in detail the concept of osteoimmunity and the mechanism and regulators of the differentiation of macrophages into osteoclasts. Furthermore, we described the role of the macrophage-osteoclast axis in typical bone damage caused by inflammation and immune diseases. These provide a clear knowledge framework for studying macrophages and osteoclasts in inflammatory and immune environments. And targeting the macrophage-osteoclast axis may be an effective strategy to treat bone damage caused by inflammation and immune diseases.
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and bone destruction. Microbial infection is considered to be the most important inducement of RA. The pregnancy planning of women in childbearing age is seriously affected by the disease activity of RA. Gut microbiome, related to immunity and inflammatory response of the host. At present, emerging evidence suggested there are significant differences in the diversity and abundance of gut microbiome during pregnancy and lactation, which may be associated with the fluctuation of RA disease activity. Based on these research foundations, we pioneer the idea of regulating gut microbiome for the treatment of RA during pregnancy and lactation. In this review, we mainly introduce the potential treatment strategies for controlling the disease activity of RA based on gut microbiome during pregnancy and lactation. Besides, we also briefly generalize the effects of conventional anti-rheumatic drugs on gut microbiome, the effects of metabolic changes during pregnancy on gut microbiome, alteration of gut microbiome during pregnancy and lactation, and the effects of anti-rheumatic drugs commonly used during pregnancy and lactation on gut microbiome. These will provide a clear knowledge framework for researchers in immune-related diseases during pregnancy. Regulating gut microbiome may be a potential and effective treatment to control the disease activity of RA during pregnancy and lactation.
MicroRNAs (miRNAs) consist of a large family of small, non-coding RNAs with the ability to result in gene silencing post-transcriptionally. With recent advances in research technology over the past several years, the physiological and pathological potentials of miRNAs have been gradually uncovered. MiR-149-5p, a conserved miRNA, was found to regulate physiological processes, such as inflammatory response, adipogenesis and cell proliferation. Notably, increasing studies indicate miR-149-5p may act as an important regulator in solid tumors, especially cancers in reproductive system and digestive system. It has been acknowledged that miR-149-5p can function as an oncogene or tumor suppressor in different cancers, which is achieved by controlling a variety of genes expression and adjusting downstream signaling pathway. Moreover, the levels of miR-149-5p are influenced by several newly discovered long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there is blank about systematic function and mechanism of miR-149-5p in human cancers. In this review, we firstly summarize the present comprehension of miR-149-5p at the molecular level, its vital role in tumor initiation and progression, as well as its potential roles in monitoring diverse reproductive and digestive malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.