Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.
The growing field of stem cell therapy is moving toward clinical trials in a variety of applications, particularly for neurological diseases. However, this translation of cell therapies into humans has prompted a need to create innovative and breakthrough methods for stem cell tracing, to explore the migration routes and its reciprocity with microenvironment targets in the body, to monitor and track the outcome after stem cell transplantation therapy, and to track the distribution and cell viability of transplanted cells noninvasively and longitudinally. Recently, a larger number of cell tracking methods in vivo were developed and applied in animals and humans, including magnetic resonance imaging, nuclear medicine imaging, and optical imaging. This review has been intended to summarize the current use of those imaging tools in tracking stem cells, detailing their main features and drawbacks, including image resolution, tissue penetrating depth, and biosafety aspects. Finally, we address that multimodality imaging method will be a more potential tracking tool in the future clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.