We propose a single diffractive optical element called the composite fractional spiral zone plates to generate superimposed fractional optical vortices. Such an element is composed of two fractional spiral zone plates (FSZPs) through logical AND operation, and the produced beam carries superimposed fractional orbital angular momentum (OAM) states. By controlling the topological charge of the superimposed FSZPs, denoted by
l
1
and
l
2
, one can flexibly obtain the desired superimposed fractional OAM modes of the generated beam. Especially, a deep-learning model with a densely connected convolutional neural network architecture is utilized to accurately predict the superimposed fractional OAM states of SFOVs. The average recovery rate of the superimposed fractional OAM states based on the training model is over 99%, and the average error is as small as 0.02. This work may pave the way for wide-ranging applications such as smart OAM communication, particle transmission, and even quantum entanglement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.