Spectral clustering has aroused extensive attention in recent years. It performs well for the data with arbitrary shape and can converge to global optimum. But traditional spectral clustering algorithms set the importance of all attributes to 1 as default, when measuring the similarity of data points. In fact, each attribute contains different information and their contributions to the clustering are also different. In order to make full use of the information contained in each attribute and weaken the interference of noise data or redundant attributes, this paper proposes a feature weighted spectral clustering algorithm based on knowledge entropy (FWKE-SC). This algorithm uses the concept of knowledge entropy in rough set to evaluate the importance of each attribute, which can be used as the attribute weights, and then applies spectral clustering method to cluster the data points. Experiments show that FWKE-SC algorithm deals with high-dimensional data very well and has better robustness and generalization ability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.