Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments.
Pristine monocrystalline molybdenum disulfide (MoS) possesses high mechanical strength comparable to that of stainless steel. Large-area chemical-vapor-deposited monolayer MoS tends to be polycrystalline with intrinsic grain boundaries (GBs). Topological defects and grain size skillfully alter its physical properties in a variety of materials; however, the polycrystallinity and its role played in the mechanical performance of the emerging single-layer MoS remain largely unknown. Here, using large-scale atomistic simulations, GB structures and mechanical characteristics of realistic single-layered polycrystalline MoS of varying grain size prepared by confinement-quenched method are investigated. Depending on misorientation angle, structural energetics of polar-GBs in polycrystals favor diverse dislocation cores, consistent with experimental observations. Polycrystals exhibit grain-size-dependent thermally induced global out-of-plane deformation, although defective GBs in MoS show planar structures that are in contrast to the graphene. Tensile tests show that presence of cohesive GBs pronouncedly deteriorates the in-plane mechanical properties of MoS. Both stiffness and strength follow an inverse pseudo Hall-Petch relation to grain size, which is shown to be governed by the weakest link mechanism. Under uniaxial tension, transgranular crack propagates with small deflection, whereas upon biaxial stretching, the crack grows in a kinked manner with large deflection. These findings shed new light in GB-based engineering and control of mechanical properties of MoS crystals toward real-world applications in flexible electronics and nanoelectromechanical systems.
Understanding the thermal and mechanical properties of CH4 and CO2 hydrates is essential for the replacement of CH4 with CO2 in natural hydrate deposits as well as for CO2 sequestration and storage. In this work, we present isothermal compressibility, isobaric thermal expansion coefficient and specific heat capacity of fully occupied single-crystal sI-CH4 hydrates, CO2 hydrates and hydrates of their mixture using molecular dynamics simulations. Eight rigid/nonpolarisable water interaction models and three CH4 and CO2 interaction potentials were selected to examine the atomic interactions in the sI hydrate structure. The TIP4P/2005 water model combined with the DACNIS united-atom CH4 potential and TraPPE CO2 rigid potential were found to be suitable molecular interaction models. Using these molecular models, the results indicate that both the lattice parameters and the compressibility of the sI hydrates agree with those from experimental measurements. The calculated bulk modulus for any mixture ratio of CH4 and CO2 hydrates varies between 8.5 GPa and 10.4 GPa at 271.15 K between 10 and 100 MPa. The calculated thermal expansion and specific heat capacities of CH4 hydrates are also comparable with experimental values above approximately 260 K. The compressibility and expansion coefficient of guest gas mixture hydrates increase with an increasing ratio of CO2-to-CH4, while the bulk modulus and specific heat capacity exhibit the opposite trend. The presented results for the specific heat capacities of 2220-2699.0 J kg(-1) K(-1) for any mixture ratio of CH4 and CO2 hydrates are the first reported so far. These computational results provide a useful database for practical natural gas recovery from CH4 hydrates in deep oceans where CO2 is considered to replace CH4, as well as for phase equilibrium and mechanical stability of gas hydrate-bearing sediments. The computational schemes also provide an appropriate balance between computational accuracy and cost for predicting mechanical and thermal properties of gas hydrates in the high temperature range (≥260 K), and the schemes may be useful for the study of other complex hydrate systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.