<p class="MsoNormal" style="text-align: left; margin: 0cm 0cm 0pt; layout-grid-mode: char;" align="left"><span class="text"><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;">Computational Intelligence techniques have been proposed as an efficient tool for modeling and forecasting in recent years and in various applications. Water is a basic need and as a result, water supply entities have the responsibility to supply clean and safe water at the rate required by the consumer. It is therefore necessary to implement mechanisms and systems that can be employed to predict both short-term and long-term water demands. The increasingly growing field of computational intelligence techniques has been proposed as an efficient tool in the modeling of dynamic phenomena. The primary objective of this paper is to compare the efficiency of two computational intelligence techniques in water demand forecasting. The techniques under comparison are Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). In this study it was observed that ANNs perform significantly better than SVMs. This performance is measured against the generalization ability of the two techniques in water demand prediction.</span></span><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;"></span></p>
In recent years, data mining techniques have been used to identify companies who issue fraudulent financial statements. However, most of the research conducted thus far use datasets that are balanced. This does not always represent reality, especially in fraud applications. In this paper, we demonstrate the effectiveness of cost-sensitive classifiers to detect financial statement fraud using South African market data. The study also shows how different levels of cost affect overall accuracy, sensitivity, specificity, recall and precision using PCA and Factor Analysis. Weighted Support Vector Machines (SVM) were shown superior to the cost-sensitive Naive Bayes (NB) and K-Nearest Neighbors classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.