Au/graphene/n-InP Schottky barrier diode (SBD) was fabricated by the use of spray pyrolysis technique with a monolayer graphene interlayer, and the temperature dependent characteristics was performed in a wide temperature range from 60 to 300 K with steps. The Au/GR/n-InP SBD exhibited excellent rectifying behavior however barrier height (Φ b0 ) of the device increased with increasing temperature while ideality factor (n) and series resistance (R s ) decreased. The strong temperature dependency of SBH and the deviation from theoretical value of Richardson constant clarified by considering a Gaussian distribution model of the SBH which was caused by the BH inhomogeneities. The mean BH F b0 of 0.94 and 0.59 eV was estimated with the standard deviation of 0.011 and 0.004 eV attributed to the presence of a double GD of SBD. The modified Richardson plots gave mean BH value of 0.98 and 0.70 eV and the Richardson constant values of 8.10, 13,38 A K −2 cm −2 was very close to its theoretical value of 9.4 A K −2 cm −2 . These results yields that carrier transport mechanism of Au/GR/n-InP SBD can be clarified by Thermionic-emission-diffusion (TED) mechanism with a double Gaussian distribution of the SBHs. In addition, the I-V characteristics of SBD under dark and light ambiance indicates that Au/graphene/n-InP is strongly dependent on the light effect. Thus, we can conclude that graphene/n-InP device is a potential candidate for photovoltaic systems. Moreover, the UV-vis spectroscopy of the graphene film exhibit a strong absorption as A=9.45% compared to the literature, that is, Au/GR/n-InP SBD grown by spray pyrolysis has excellent optical properties for optoelectronic applications.
Öz Schottky engel diyotları n-tipi InP (100) yarıiletkeni kullanılarak elde edildi. Ohmik kontaklar In metali buharlaştırıldıktan sonra 320 o C'de ve N2 ortamında tavlanarak yapıldı. Schottky kontakları 0,5 mm çapında ve yarıiletkenin ön yüzünde imal edildi. I-V karakteristikleri 20K ve 300K sıcaklık aralığında sıcaklığın bir fonksiyonu olarak ölçüldü. Deneysel I-V karakteristiklerinin Cu/n-tipi Inp Schottky diyotları için geleneksel Termiyonik Emisyon (TE) teorisi ile uyum içerisinde olduğu gözlemlendi. Cu/n-tipi InP Schottky diyotlarının kapasite-gerilim (C-V) ölçümleri 300-10 K sıcaklık aralığında ve 10K adımlarla 1 MHz frekansta alındı. Numune sıcaklığına bağlı olarak diyotlarımızın elektriksel karakterizasyonunda değişikliklerin olduğu tespit edildi. Cu/n-InP/In Schottky kontakların sıcaklığa bağlı engel karakteristiklerinin "engel inhomojenliği modeline" uyduğu belirlendi. 20-150 K ve 150-300 K sıcaklık aralığında Schottky diyotlara iki farklı ortalama engel yüksekliğinin eşlik etmesi engel yüksekliğinin çift Gaussian modeli ile uyum içerisindedir. Ayrıca sıcaklığa bağlı I-V ve C-V karakteristiklerinden seri direnç, taşıyıcı konsantrasyonu, difüzyon potansiyeli ve Fermi enerjisi gibi parametreleri de hesaplandı.
Ti/GO/n-InP Schottky barrier diode (SBD) is obtained by growing graphene oxide (GO) film on n/InP semiconductor using easy and economical spray pyrolysis method. The effect of GO as the interfacial layer on device performance of Ti/GO/n-InP SBD is investigated in detail. The optical absorbance spectra show that bandgap energy of the GO film is 3.57 eV. The optical transmittance value of 79.5% is in consistent with the absorbance spectra of GO film. The barrier heights (BHs) that are estimated for the Ti/GO/n-InP SBD vary from 0.263 to 0.980 eV (I-V) and 1.328 to 1.006 eV (C-V) from the I-V and C-V measurements in the temperature range of 100-400 K. The contradiction between the BHs from the I-V and C-V characteristics is discussed. The mean BH values are found to be Φ b01 ¼ 0.98 eV (250-400 K) and Φ b02 ¼ 0.73 eV (100-250 K) from the Φ b0-1/2kT plot. From the modified Richardson plots based on a Gaussian distribution of BH, Φ b01 ¼ 0.93 (250-400 K) and Φ b02 ¼ 0.69 eV (100-250 K) and A* is calculated to be 12.44 and 12.73 A cm À2 K À2 , respectively. The I-V-T and C-V-T measurements demonstrate that carrier transport mechanism of Ti/GO/n-InP is well explained by thermionic emission (TE) mechanism with a double Gaussian distribution of the Schottky barrier heights (SBHs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.